6 простых способов улучшить память и перезарядить мозг
Принимать душ с закрытыми глазами, пройтись по магазинам, научиться жонглировать — разбираемся, как улучшить память.
Принимай душ с закрытыми глазами
Как зайдешь в душ, сразу закрывай глаза — поиск шампуней, гелей и мыла станет для твоего мозга (особенно для той его части, что отвечает за память) неплохой разминкой. «Ориентирование вслепую — простой способ перезагрузить внимательность и память», — уверяет Рон Уайт, дважды победитель Американского чемпионата памяти. Если побаиваешься рыскать на ощупь в ванной, попробуй зайти в кухню. Закрой глаза и попробуй отыскать, скажем, блюдце (но только не напорись на нож).
Двигай телом
Танцевальные движения не только активируют мозжечок (он отвечает за предусмотрительность и суждения), но и заставляют твой организм вырабатывать нейротрофический фактор мозга (BDNF) — белок, необходимый для эффективной коммуникации нейронов. «Танцы — это социальное действо, и, как всякая коммуникация, они активизируют работу нейронов», — рассказывает Гэри Смолл, директор Центра долголетия при Университете Калифорнии в Лос-Анджелесе и соавтор книги The Alzheimer’s Prevention Program. — Кроме того, танцы помогают сердцу гнать кислород к извилинам и улучшают координацию».
Смени рабочую руку
Побудь левшой, если ты правша, и наоборот. Обычные действия (держать вилку, ложку, зубную щетку), переложенные на непривычную руку, уже помогут твоему мозгу перезагрузится и научиться простым вещам заново. «Когда ты — еще в детстве — привыкаешь всегда использовать одну и ту же руку для выполнения какой-либо задачи, это становится рефлексом — и его полезно «растеребить», — советует Аллен Силс, профессор нейрохирургии в медицинском центре Университета Вандербильта (США). — Когда ты меняешь руку, мозг активируется, чтобы задействовать новые области — это отличная разминка для него».
Получи КМС по настольному теннису
«Пинг-понг улучшает координацию связки рука-глаз и дает твоему мозгу отличную тренировку, — утверждает Дэниел Амен, исследователь работы мозга и основатель Клиники Амен (США). — И вообще запомни: когда дело доходит до интеллектуальной тренировки, первое правило — делать вещи, которые твой мозг делать не умеет. Любое обучение новому — прекрасная разминка для мозга, и настольный теннис в этом смысле очень крут».
Пройдись по магазинам
«Шоппинг — прекрасная тренировка для ума, — уверен Гэри Смолл. — Ты ходишь по магазинам, ты контактируешь с новыми людьми, ты высчитываешь цены. Все эти действия заставляют работать разные области мозга, при этом они следуют одно за другим — считай, что это своего рода кросс-фит для ума. Однако не увлекайся покупками чрезмерно — излишне большие траты могут вызвать стресс и наоборот навредят твоему компьютеру».
Научись жонглировать
Согласно результатам опубликованного в 2013 году в журнале Nature исследования, систематическое жонглирование увеличивает некоторые области мозга. После того как трех новичков в течение трех месяцев обучали бросать шары, количество коричневого вещества в височной доле и позади внутритеменной борозды (эти области обрабатывают визуальную информацию и двигательные функции) у них увеличилось. «Жонглирование — и любое другое занятие, требующее работы крупной и мелкой моторики, ориентации в пространстве и распознавания последовательностей, — заставит твой мозг вкалывать по полной, разбудив все спящие до тех пор области», — уверяет Аллен Силс.
Нарушения памяти — лечение, диагностика ухудшения памяти в Клинике Expert Clinics
Память – это психический процесс, благодаря которому происходит приобретение, сохранение и воспроизводство событий. Ее потеря или нарушения относятся к когнитивной проблеме, связанной с головным мозгом – самой энергоемкой системе в организме. Нервная система обрабатывает сигналы, которые получает от органов чувств, сохраняет их на уровне рефлексов и связей между нейронами.
Записаться на консультацию
Причины заболеваний памяти
По данным нейрофизиологов, человеческий мозг может запомнить огромное количество информации, сопоставимое по объему с сетью Интернет. При таких потенциальных способностях удивительно, что люди забывают очевидные бытовые вещи: выключили или нет утюг, как зовут коллегу на работе, когда день рождения у родственника.
Распространенные причины нарушения памяти:
Гипертония. При повышенном давлении сосуды сужаются, нарушается питание клеток головного мозга.
Сахарный диабет. Повышение уровня сахара в крови влияет на скорость кровотока, вследствие чего могут возникнуть проблемы с памятью.
Депрессия и стресс. Человек приобретает много навязчивых мыслей, которые мешают запоминать простые события. У людей, которые долгое время пребывали в подавленном состоянии, замедляется формирование новых нервных клеток.
Переутомление. Когда человек сильно устает эмоционально, умственно, физически, это становится причиной для стресса и высокой вероятности ухудшения памяти.
Заболевания кишечника. Это один из важнейших органов, который отвечает за формирование иммунитета, поэтому хронические заболевания кишечника могут приводить к общим расстройствам здоровья, в том числе и к ухудшению памяти.
Остеохондроз. Изменения позвоночника, которые накапливаются вследствие травм и возраста, приводят к нарушению кровоснабжения позвоночных артерий.
Болезнь Альцгеймера. При этом заболевании потеря памяти является основным симптомом, так как процессы в центральной нервной системе нарушаются.
Вредные привычки. При разных зависимостях (алкогольной, наркотической) поражается мозг со всеми вытекающими последствиями.
Симптомы нарушений памяти
Считается, что нарушениями памяти страдают только люди пенсионного возраста. На самом деле это очень распространенная проблема. С ней сталкиваются около 30 % молодых и 70% пожилых людей. Она может быть как временной и незначительной, так и прогрессирующей и неизлечимой.
Поэтому людям любого возраста стоит обратить внимание на следующие симптомы:
Гипомнезия. Человек утрачивает способность запоминать новую информацию: имена, события, даты. Также во время разговора забывает многие выражения и все чаще применяет фразу «Забыл, как это называется». Перестает ориентироваться в знакомом пространстве, забывает человека в лицо, не может запомнить номер телефона.
Амнезия (полная или частичная потеря памяти). Человек не может вспомнить события, которые произошли с ним несколько месяцев или лет назад. Некоторые пациенты не помнят, что с ними было пару дней или часов назад.
Гипермнезия. Человек стал запоминать в несколько раз больше, чем запоминал до этого, даже если информация ему не нужна. Это происходит бессознательно и неконтролируемо. Часто сами по себе могут возникать картинки, события, реплики из прошлого.
Перезвоните мне
Продукты, укрепляющие память
Все данные, с которыми человек сталкивался, хранятся в нашей памяти.
Её необходимо питать. При снижении памяти могут помочь некоторые доступные продукты.
Петрушка. Употребление в пищу свежей петрушки способствует защите не только от потери памяти, но от преждевременного старения. Наш мозг – это совокупность клеток, которые соединены друг с другом с помощью «проводов». Апигенин, содержащийся в петрушке, позволяет создавать новые нейронные связи. Благодаря им одни клетки мозга связываются с другими.
Яйца. Холин, содержащийся в яичном желтке, участвует в передаче информации и процессе запоминания, укрепляет сердечную мышцу и нормализует сердечный ритм. Также в яйцах содержатся витамины группы В, которые помогают замедлить возрастные изменения в мозге и предотвратить деменцию (приобретенное слабоумие).
Орехи. Цинк и йод в составе грецких орехов полезны для мозга, кожи, ногтей, волос.
Диагностика и лечение нарушений памяти
Память не лечится обособленно, так как ее нарушения всегда связаны с определенным заболеванием. Этой проблемой занимаются врачи-неврологи, психиатры, клинические психологи.
Врачи антивозрастной медицины Expert Clinics к вашей проблеме подойдут со всей щепетильностью: произведут сбор анамнеза, диагностируют причину и стадию нарушения памяти, назначат обследование и эффективное лечение.
Записаться
Чего мы не знаем о головном мозге?
Наш мозг хранит множество тайн и загадок. И на самом деле в природе нет ничего более сложного и более неизведанного, чем мозг, его называют «святой святых», «черным ящиком», «второй вселенной». И на самом деле, нет ничего более необычного, чем самый главный орган человеческого тела. Мы предлагаем вам несколько удивительных фактов о мозге.
Слышали ли вы о том, что человек может прожить даже без одного полушария. Это звучит абсолютно немыслимо, но это на самом деле так. Эта операция называется гемисферэктомия, чаще всего к ней прибегают, когда пациент страдает от эпилепсии или есть другие показания. Но может ли это как-то отразиться на функционировании человека? Эта операция для некоторых людей может пройти абсолютно без каких-либо последствий, а у кого-то происходит нарушение функционирования опорно-двигательного аппарата, например, как было у Кристины Саунтхаус. У Кристины, чей череп наполовину пуст, парализована левая сторона тела, но тем не менее она может ходить, работать и у неё есть даже степень магистра. Дело в том, что её левое полушарие взяло на себя функции правого полушария. Но, однако люди могут после неё жить полноценной жизнью. Они могут получать образование, работать, воспроизводить здоровое потомство.
Каков на ощупь мозг? Если не каждый, то многие точно задавались таким вопросом. По консистенции мозги человека похожи на желе, нейрохирурги даже говорят о том, что на особенно сложных операциях, мозги могут даже уходить в аппарат для отсоса жидкости и крови.
Наши страхи хранятся также в головном мозге, и даже наш самый большой страх может поместиться в самый обычный миндальный орех, именно такого размера является область головного мозга, которая отвечает за страхи и другие эмоции. Эта область так и называется – миндалевидное тело.
Как это работает? При поступлении сигнала от источника страха от миндалины поступают сигналы от мозга до надпочечников – желёз, которые выбрасывают 2 гормона, адреналин и кортизол. Адреналин как раз и отвечает за возникновение у нас чувства тревоги и страха, а кортизол – гормон стресса. В момент, когда мы испытываем страх, адреналин поступает в кровь, биение сердца и дыхание учащается, кровь приливает к кишечнику, оттуда она приливает к головному мозгу, мы перестаём испытывать чувства голода, так наше внимание концентрируется, зрачки расширяются, чтобы ловить как можно больше света, и мы уже готовы дать защитную реакцию на источник страха.
Но есть и люди, у которых эта часть мозга отсутствует. Да, эти люди не боятся ровным счётом ничего, однако это вовсе не классно, как может показаться на первый взгляд. В момент особой опасности эти люди не могут защититься, поскольку они не испытывают стресса, головной мозг не даёт таких сигналов, и вероятность таких людей погибнуть намного выше, то есть страх дан для того, чтобы выживать.
Есть еще и абсолютно необъяснимый факт, но левое полушарие человека контролирует движение и реакции правой части тела, а правое полушарие – левой части тела. Это сложный вопрос, который учёные и сегодня задают эволюции.
Наша речь связана напрямую с сильвиевой щелью. Слышали о такой? Скорее всего нет. Это крайне важный отдел головного мозга, ведь именно здесь проходит Центр Брока и совсем рядом Центр Вернике, они отвечают за речь. Повреждение этих участков могут привести к катастрофе – нарушению речи. Существуют случаи, когда при определённом повреждении люди понимали всё, что им говорят, но не могли произнести ровным счёт ничего, кроме нескольких несвязных звуков, например, тан-тан, или тон-тон.
Этими звуками они рассказывали и о своей семье, и профессии и о жизни. Есть нарушения, когда человек повторяет только одно и тоже слово – это называет стереотипия, также существует персеверация – случай, когда ответом на следующий вопрос становится то, что было сказано в ответе на предыдущий, эхолалия – случай, когда вы задаёте вопрос человеку, а он в свою очередь не даёт ответа, а лишь повторяет тот самый вопрос. И таких речевых особенностей очень много, особенно примечательным является такая особенность, когда человек не может назвать вещь своим именем, например, человек не может произнести слово «кисть», но он может сказать, что это предмет, которым рисуют.
Что такое SSD-диск?
Назад к результатам
Хотите знать, как работает твердотельный накопитель? Твердотельные накопители (SSD) — тип хранилища, функции которого подобны жесткому диску, но основаны на другой технологии. SSD-диски используют флеш-память с цифровым доступом, как и USB-накопители. Жесткий диск (HDD) использует вращающуюся пластину и рычаг. Рабочая поверхность этих пластин движется относительно считывающей головки. SSD-накопители обеспечивают почти мгновенную загрузку системы и приложений, поскольку им не нужно механически искать данные на вращающемся диске.
За что отвечает твердотельный накопитель?
В компьютере хранилище (SSD или HDD) работает в сочетании с системной памятью и процессором и отвечает за обращение к данным и их использование. SSD-диски обеспечивают более быстрый доступ к данным и повышают производительность компьютера. Это связано с тем, что в SSD задействованы несколько иные технологии, чем в традиционных жестких дисках. Данные операционной системы, игры, изображения и музыка с SSD будут загружаться быстрее.
К примеру, при необходимости доступа к электронной таблице и выполнения простых операций редактирования, в компьютере происходит следующее:
- Программы и файлы находятся в хранилище. В данном случае это электронная таблица, к которой выполняется доступ.
2. При выполнении запроса на открытие электронной таблицы процессор передает данные программы от хранилища в ОЗУ для быстрого доступа и использования. SSD-накопители имеют почти мгновенное время отклика, поэтому они ускоряют процесс передачи, а это то время, которое необходимо для загрузки программ и файлов.
3. Далее процессор получает данные из памяти, которая является банком свободного рабочего места вашего компьютера. Далее память используется для выполнения программ. Подробнее о различиях между памятью и хранилищем.
SSD-накопители не только быстрее, но и надежнее, поскольку не имеют движущихся частей, которые могли бы износиться или сломаться (особенно при падениях и ударах). Кроме того, они потребляют меньше энергии и экономят заряд батареи.
Ваша операционная система, программы и все файлы хранятся и извлекаются из хранилища. Установка SSD-диска — один из самых быстрых способов забыть о медленной загрузке и преобразовать почти все аспекты производительности вашей системы. Узнайте подробнее о преимуществах твердотельных накопителей.
Как некоторые люди сохраняют прекрасную память до самой старости
По мере старения организма атрофические процессы всё больше и больше повреждают человеческий мозг. Это выражается в ослаблении связей разных областей мозга, что приводит к ухудшению памяти и постепенному угасанию других важных когнитивных функций.
Однако в редких случаях пожилые люди сохраняют память такой же ясной, как и в молодости. Учёные называют их «суперстариками» (superagers).
Исследователям из Массачусетской больницы общего профиля удалось выяснить, какие процессы в мозге обеспечивают этим людям «суперпамять».
В 2019 году исследовательская группа под руководством доктора Александры Турутоглу (Alexandra Touroutoglou) собрала группу людей старше 65 лет, демонстрировавших впечатляющие результаты в тестах на память. Результаты МРТ их мозга показали, что структура и качество нейронных связей в мозгу этих «суперстариков» практически не отличались от таковых у 25-летних людей.
Теперь же исследователи провели эксперимент. Они давали группе из 40 «суперстариков», средний возраст которых составил 67 лет, сложные тесты на память, пока те находились в аппарате фМРТ. Этот способ сканирования мозга позволяет увидеть, какие регионы мозга активны в каждый конкретный момент времени.
То же самое исследование при этом проходила другая группа добровольцев: 41 человек, средний возраст которых составлял 25 лет.
Участникам эксперимента показали 80 изображений лиц или сцен, каждое из которых сопровождалось прилагательным. К примеру, на одном из изображений был городской пейзаж с надписью «индустриальный».
В ходе первого задания участники должны были определить, подходит ли прилагательное тому, что изображено на картинке. Этот процесс назвался «кодированием».
Через 10 минут участникам показали те же самые 80 картинок с подписями, которые они уже изучили, а также 40 пар новых изображений и слов, и в дополнение – 40 пар уже известных им изображений и прилагательных в новых комбинациях.
В ходе второго задания участникам нужно было вспомнить, какую пару изображение-слово они уже видели, какие пары были совершенно новыми, а какие пары просто поменялись составляющими.
Исследователи особенно внимательно следили за изменениями, происходившими в зрительной коре мозга испытуемых. Эта область мозга обрабатывает зрительную информацию, и процессы старения сказываются на ней особенно заметно.
«В зрительной коре есть популяции нейронов, избирательно участвующие в обработке разных категорий изображений, к примеру, лиц, зданий или обстановки. Эта избирательная функция позволяет группам нейронов эффективнее обрабатывать то, что мы видим, и создавать отчётливые воспоминания об этих изображениях […]», — объясняет в пресс-релизе ведущий автор работы психиатр Юта Кацуми (Yuta Katsumi) из Массачусетской больницы общего профиля.
В процессе старения эта избирательность нейронов ослабевает, и группы нейронов которые ранее реагировали, например, на лица, начинают реагировать и на другие объекты. Это значит, что постепенно визуальные образы в памяти стареющего человека становятся всё более неопределёнными. Поэтому пожилые люди могут не помнить точно, читали ли они какую-то книгу, видели ли телешоу или были в определённом месте.
Функциональная МРТ показала, что зрительная кора «суперстариков» работала так же чётко, как и у 25-летних участников исследования. То есть избирательность нейронов в этой области мозга, а точнее, нейронная дифференциация у них была такой же высокой.
Исследователи не исключают, что суперспособности этих пожилых людей можно объяснить тем, что в молодости их память была ещё более совершенной. То есть она тоже ухудшилась с возрастом, но при этом всё равно осталась впечатляющей. Но эту гипотезу ещё только предстоит проверить.
В данный момент авторы работы исследуют возможность улучшения памяти пожилых людей с помощью неинвазивной электростимуляции. Они также планируют изучить другие области мозга «суперстариков», а также их привычки и образ жизни, чтобы понять, что же позволило их мозгу остаться в таком прекрасном состоянии.
Исследование было опубликовано в научном журнале Cerebral Cortex.
Напомним, ранее мы писали о том, что мозг современных жителей Амазонии сохраняется молодым гораздо дольше, чем мозг жителя современного города. Также мы рассказывали о том, что сохранить мозг в лучшем состоянии помогают физические нагрузки, а ещё о методике омоложения мозга с помощью стволовых клеток.
Больше новостей из мира науки и медицины вы найдёте в разделах «Наука» и «Медицина» на медиаплатформе «Смотрим».
Память смартфона — описание параметров
Смартфон – настоящий помощник в условиях современных реалий, когда наступает настоящий переизбыток поступающей информации. Пользователю уже мало просто получить доступ к ней, очень важно сохранить то важное для дальнейшей эксплуатации. Поэтому перед выбором смартфона необходимо разобраться в вариантах хранения данных, которые предлагаются для максимально эффективного использования девайса. Это оперативная память (отвечает за производительность девайса), встроенная (определяет объем информации, который можно хранить на устройстве) и расширяемая (помогает решить вопрос недостатка объема хранилища).
ОПЕРАТИВНАЯ ПАМЯТЬ СМАРТФОНА, ОСОБЕННОСТИ ЕЕ ПРЕДНАЗНАЧЕНИЯ И ИСПОЛЬЗОВАНИЯ
От данного вида памяти зависит сложность и количество одновременно запускаемых на девайсе приложений – оперативка влияет на скорость запуска программ и игрушек и многозадачность процессов. В том случае, если объема оперативной памяти достаточно, без труда можно листать 10-15 вкладок браузера, заходить в приложения, разговаривать и т.д.
Вся информация, используемая приложениями в данный момент, и те данные, которые тот час необходимы ОС телефона, находятся в оперативной памяти устройства. В их числе страницы интернета, ленты соцсетей, игрушки, письма почтового ящика – все то, что пользователь использует в настоящий момент. Если же какие-либо данные в оперативке перестают быть актуальными, они оттуда удаляются. Так как оперативная память энергозависима, то при отключении или перезагрузке устройства она сразу очищается.
Учитывая тот факт, что объем оперативки сильно влияет на производительность смартфона, в случае его недостатка тяжелые страницы в интернете могут просто не загрузится, реакция на команды будет замедленной, а некоторые из приложений могут вообще не загрузиться. На рынке представлен огромный выбор аппаратов с разным объемом оперативки, естественно, чем ее больше, тем выше ценник. И загвоздка заключается в том, что сложно «на глаз» определить какой объем подойдет конкретному пользователю: следует учитывать то, какие программы используются, и какие из них должны быть постоянно запущенными. Важно заранее определится с количеством гигабайтов, так как увеличить объем оперативки нельзя.
Поэтому необходимо поподробней разобраться на что способен тот или иной смартфон с определенным объемом
ОПЕРАТИВНОЙ ПАМЯТИ:
· 512 Мб. Такой объем оперативки можно встретить или в бюджетных, или в устройствах ранее выпускаемых. Данного количества может не хватить для полноценной работы приложений, если планируется их активное использование.
· 1 Гб. Тот минимальный объем от которого следует отталкиваться при выборе смартфона. Конечно, о супер многозадачности речи не идет, но 3-5 одновременно работающих программ ему под силу.
· 2 Гб. Оптимальный вариант для девайсов средне бюджетного класса. Такого объема вполне достаточно для работы тяжелых игрушек на средних и низких настройках и одновременной работы около 10 приложений.
· 3 Гб. Встречается у функциональных моделей, позволяет одновременно работать большому количеству приложений. Те программы, которые используются владельцем девайса чаще всего, запускаются мгновенно. Такой запас памяти позволяет не ограничивать себя в установке анимационных лаунчеров, дополнительных «фишек», и, естественно, ни один приличный игровой смартфон не оснащается оперативной памятью менее 3 Гб.
· 4 Гб. Внушительный объем для пользователей, который не ограничены в вопросе денежных средств. Для повседневных задач такого количества гигабайтов многовато. Конечно, подкупает скорость работы такого девайса – приложения будут запускаться в одно мгновение, и система сможет хранить практически все программы в оперативной памяти одновременно.
ВСТРОЕННАЯ ПАМЯТЬ СМАРТФОНА, ОСОБЕННОСТИ ЕЕ ПРЕДНАЗНАЧЕНИЯ И ИСПОЛЬЗОВАНИЯ
Встроенная или внутренняя память – это то место, где физически хранятся данные пользователя: программы и приложения, музыкальные файлы, видеоролики, электронные книги, фото и прочее. Большой объем памяти является отличным показателем – это значит, что девайс может выступает самостоятельным хранилищем без привлечения дополнительных внешних накопителей.
Главное отличие встроенной и оперативной памяти в том, что данные постоянной памяти сохраняются даже если отключить электропитание. Когда необходимо использовать сохраненные данные, система получив команду, копирует их в оперативную память, после чего владелец устройства может видеть фото и видео, слушать музыку, использовать приложение и т.д. Более того, хранимая в оперативной памяти информация, может быть сохранена на встроенную: текстовая страница из интернета или изображение, при загрузке любого приложения она помещается в постоянную память через оперативную.
Важно понимать, что объем встроенной памяти практически не оказывает влияния на быстродействие устройства, при этом, чем больше гигабайтов, тем больше данных можно хранить на телефоне. Не стоит забывать и о том, что указанный объем встроенной памяти не соответствует его фактическому значению, так как часть ее уже хранит ОС и предустановленные приложения.
У современных девайсов объем внутренней памяти составляет 4-256 Гб, естественно, чем больше этот показатель, тем выше цена. Типичными объемами являются – 16 Гб, 32 Гб, 64 Гб, к примеру в смартфонах Хайскрин. Приложения и их временные файлы занимают не очень много места, чего нельзя сказать про игрушки, которые могут занимать до нескольких гигабайт, операционка занимает не менее 0,5 Гб, тяжелыми являются и высококачественные фото, видеоролики. Исходя из этого оптимальный минимум составляет 16 Гб.
РАСШИРЯЕМАЯ ПАМЯТЬ СМАРТФОНА, ВИДЫ И ВОЗМОЖНОСТИ
За счет карты microSD
Основная масса современных смартфонов на Андроиде с легкостью решают вопрос недостающего объема памяти за счет расширяемой памяти, а именно карт microSD. Минимальные физические размеры и большие объемы такого типа хранилищ делают карты очень удобными в использовании. На сегодняшний день существует огромный выбор карт памяти от 4 Гб до 256 Гб, максимально поддерживаемый объем зависит от модели и возможностей телефона.
Обязательно следует учесть тот факт, что не все целесообразно хранить на microSD и покупать смартфон с маленькой внутренней памятью, чтобы в дальнейшем купить карту побольше, не стоит. Так как карта памяти работает медленнее встроенной, хранимые на ней и часто используемые программы не самым благоприятным образом скажутся на быстродействии смартфона. Также, существуют программы, которые не могут работать с карты памяти, а некоторые модели телефонов не могут воспроизводить с них приложения. Поэтому, лучше хранить программы на внутренней памяти, а медиа, фото, документы и прочее на карте.
За счет USB-OTG
Да-да, это тоже вид расширяемой памяти для мобильных устройств. Ко многим современным смартфонам можно подключать USB-флешки, а также, внешние жесткие диски с помощью USB-порта. Естественно, постоянно подключенными эти устройства к смартфону быть не могут, но в качестве архива данных подходят отлично.
Удаленное расширение
Самый новый и модный способ расширения памяти девайса с помощью облака. Актуальность данного вида расширения памяти прогрессировала вместе с развитием мобильного интернета, сетей 3G и 4G. Существует достаточное количество сервисов, предлагающих свои услуги на бесплатной основе, в их числе Яндекс, Mail.ru, Google и другие. Использование облачного хранилища отличная альтернатива, если смартфон не поддерживает microSD или подключение внешних устройств. Также, порадует возможность обмена данными между устройствами пользователя (смартфоны, планшеты, ПК). Небольшим недостатком облачного хранилища можно назвать зависимость от интернета: если мобильная сеть не устойчива и нет точки доступа к Wi-Fi, воспользоваться облаком не представится возможным.
Магазин недорогих смартфонов Хайскрин
Каталог мобильных телефонов Highscreen
Пища для ума — НЦЗД
Старший дошкольный (от 4 до 6 лет) и младший школьный (от 6 до 10 лет) возраст – это два очень важных периода в жизни ребенка. Именно в это время происходит интенсивное развитие памяти, речи, внимания, идет становление характера, эмоциональной сферы и многих привычек, в том числе и пищевых.
Для того чтобы обеспечить правильное развитие ребенка в различные возрастные периоды, пища не только в количественном, но в качественном отношении должна строго отвечать физиологическим потребностям и возможностям детского организма.
Особенно важно правильно подойти к вопросу питания детей, которые впервые пойдут в школу. В этот ответственный период повышенных психологических, физических, умственных и эмоциональных нагрузок, следует поддержать организм ребенка всеми необходимыми питательными веществами.
Мозг по весу составляет всего 2 — 3% от массы тела, зато потребляет около 20% всей энергии, получаемой с пищей.
Зависимость интеллекта от качества питания можно считать доказанной. Широкомасштабные исследования достоверно подтвердили: недоедание матери в период беременности и скудное питание ребенка в младенческом возрасте оказывают практически необратимое негативное влияние на развитие умственных способностей.
Клетки головного мозга, как и все остальные клетки организма, состоят из белков, жиров и углеводов.
Роль белков в жизнедеятельности организма ребенка исключительно велика и многообразна. Так как ребенок практически не имеет резервных запасов белка, ему требуется постоянное поступление белка с пищей, в первую очередь белка животного происхождения, в состав которого входят незаменимые (не образующиеся в организме) аминокислоты.
Жиры входят в состав клеток и клеточных мембран. Очень важно поступление с пищей незаменимых полиненасыщенных жирных кислот, которые выполняют в организме важнейшие функции. Они необходимы для нормального развития головного мозга и органов зрения, становления иммунитета и пр.
Полиненасыщенные жирные кислоты, особенно кислоты группы омега-3 регулируют уровень холестерина. Ими богаты тресковая печень, рыбий жир и вообще жирная рыба — форель, кета. Полезны кукурузное, соевое, льняное растительное масло. Одной столовой ложки любого растительного масла достаточно для удовлетворения суточной потребности в полиненасыщенных жирных кислотах. Кстати, растительное масло тем полезнее, чем ближе к северу выращен урожай масличной культуры.
Нашему мозгу, чтобы правильно работать, нужно много глюкозы. Обычно мы получаем ее из продуктов, богатых углеводами — таких, как хлеб, крупы, кондитерские изделия, сахар. Кстати, глюкоза — единственный источник энергии для наших нервных клеток — нейронов, они очень чувствительны к ее содержанию в крови, поэтому ее недостаточное поступление моментально отражается на работе мозга.
С разнообразной пищей ребенок получает не только белки, жиры и углеводы, но и витамины и минеральные вещества, которые также необходимы для активной работы мозга.
Витамин B1 (тиамин) — витамин ума. При физических и умственных нагрузках потребность в этом витамине увеличивается в 10-15 раз. Он воздействует на обмен веществ и функцию нервной системы. Витамин В1 в большом количестве содержат оболочки зерновых продуктов, крупы, (гречневая, пшенная, овсяная), лущеный горох, дрожжи, картофель, ежевика, малина, цикорий, чернике, шиповник, щавель.
Витамин В2 (рибофлавин) — стимулятор обмена веществ. Он участвует в тканевом дыхании, воздействует на регенерацию тканей. Потребность в этом витамине хорошо покрывается растительной пищей: это крупа, хлеб, горох, многие овощи и фрукты. Рибофлавина много в облепихе, одуванчике, цикории, шиповнике.
Витамин В6 (пиридоксин) — витамин крепких нервов – влияет на возбудимость и сократимость нервно-мышечного аппарата, улучшает долговременную память, повышая оперативность интеллектуальных процессов. Содержится в бананах, картофеле, овсянке, тунце, курятине. Дневную норму можно получить из 200 г говядины и 50 г хлопьев с отрубями. Богаты этим витамином блюда из картофеля, пшеницы, капусты, гороха, гречихи, сладкого перца, риса, некоторых фруктов.
Витамин С (аскорбиновая кислота) — витамин иммунитета. При дефиците аскорбиновой кислоты работоспособность снижается. Возможно развитие такой болезни, как цинга. Аскорбиновая кислота является антиоксидантом и укрепляет мембраны клеток, повышает устойчивость к дефициту кислорода и другим экстремальным факторам. Основной источник витамина С — растительные продукты: большинство овощей и фруктов, а также черная смородина, цитрусовые, киви, шиповник.
Витамин А (ретинол) влияет на остроту зрения. Потребность в витамине А повышается в 3-4 раза во время соревнований, физических нагрузок, стрессов. Витамин А в форме каротиноидов содержится не только в культурных растениях (морковь, шпинат, перец, лук, салат, помидоры), но и в дикорастущих (боярышник, ежевика, ирга, калина, малина, рябина, черника, шиповник).
Витамин Е (токоферол) увеличивает скорость нервных процессов, быстроту реакции и интеллект. Токоферол обладает антиокислительными свойствами. Витамина Е много в растительных маслах, зародышах злаков, зеленых овощах, облепихе, шиповнике, а также ежевике, рябине.
Витамин Р — витамин проницаемости. Под витамином Р понимается большая группа разнообразных (свыше 500) химических соединений, (полифенольные соединения, или биофлавоноиды). Они не только укрепляют капилляры, как считалось раньше, но и оказывают антиокислительное, антимикробное, противовирусное, антитоксическое, противовоспалительное, спазмолитическое, противоязвенное, регенерирующее, противоопухолевое и желчегонное действие. Биофлавоноиды содержатся в тех же продуктах, что и витамин С, т. е. овощах и фруктах.
Недостаток витамина F может приводить к депрессии и нарушениям памяти. Он содержится в зелени, листьях капусты, шпинате.
Холин – это жироподобное вещество, которое помогает поддерживать связь между разными участками мозга. Его дефицит приводит к рассеянности, невозможности сосредоточиться. Холин — один из компонентов лецитина, который содержится в яичных желтках, субпродуктах (говяжья и свиная печень, почки).
Кальций. Универсальный регулятор процессов жизнедеятельности. Принимает участие в передаче нервных импульсов, секреции гормонов и медиаторов, деятельности анализаторов и др., стабилизирует возбудимость клеток. Недавно установлено, что этот элемент способен бороться с депрессиями. Содержится в молочных продуктах, сухофруктах, капусте брокколи, миндале, сардинах. Во многих плодах и овощах также содержится значительное количество кальция. К ним относятся абрикосы, виноград, горох, капуста, зеленый лук, петрушка, салат, слива, шелковица и др. Щавель и шпинат богаты кальцием, но наличие щавелевой кислоты препятствует его усвоению. Идеально усваивается кальций в составе баклажанов, свеклы, брюссельской капусты, томатов. Кальций содержится и во многих дикорастущих съедобных растениях: бруснике, кизиле, чернике и др.
Калий. Участвует в процессах передачи нервного возбуждения, проведения импульсов по нервным волокнам, регулирует возбудимость мышц, способствует расширению капиллярной сети, улучшает кровоснабжение работающих мышц. Он особенно необходим для нормальной деятельности сердца. Наиболее богаты калием сухофрукты, такие, как урюк, изюм, курага, сухие персики, финики, чернослив. Много калия в печеном картофеле, томатах, зелени петрушки, шпинате, брюссельской капусте, черной смородине, фасоли, сельдерее, инжире. Дополнительным источником калия могут быть брусника, ежевика, малина, одуванчик, цикорий, черника, шиповник и др.
Фосфор настолько тесно связан с кальцием, что чаще всего говорят о фосфорно-кальциевом обмене. Он участвует во многих видах обмена веществ. Особенно важен он для функций нервной и мышечной систем. Фосфор содержится в небольших количествах в животных продуктах — мясе, рыбе. Хорошим его источником являются лишь сухофрукты, бобовые, хлебопродукты, а также овощи и травы: лук, петрушка, пастернак, капуста, хрен, салат, морковь, свекла.
Железо входит в состав гемоглобина, окислительно-восстановительных ферментов, тем самым, участвуя в транспорте кислорода в тканевом дыхании. Железодефицитная анемия, которая часто выявляется у детей раннего возраста, приводит к тому, в старшем возрасте, особенно в начальной школе, ребенок неусидчив, не может сосредоточиться на уроках, двигательно расторможен, ухудшаются концентрация внимания и память.
Очень важно учитывать не только количественное содержание железа в продуктах, но и его качественную форму. Различают два основных вида железа: гемовое, которое содержится в мясных продуктах, и негемовое – преимущественно в продуктах растительного происхождения.
Гемовое железо хорошо всасывается и усваивается организмом независимо от влияния других ингредиентов пищи, процент его усвоения составляет 17 – 22%, тогда как всасывание негемового железа значительно ниже, 3 – 5%, и на его усвоение оказывают влияние как активаторы (органические кислоты, белки, углеводы, витамины) так и ингибиторы всасывания (фитаты, фосфорно-кальциевые соединения, пищевые волокна и др.). Степень усвоения негемового железа во многом зависит от состава рациона. Так, добавление 50 г мяса к овощному блюду или кашам увеличивает усвоение содержащегося в них железа в 2 раза, добавление 50 г рыбы усиливает этот процесс в 1,5 раза.
Дефицит магния провоцирует бессонницу и головные боли, истощая кору головного мозга, снижая ее возможности и работоспособность, становится причиной раздражительности, забывчивости, вызывает частые головокружения. Содержится магний в отварном картофеле, капусте брокколи, плавленом сыре, какао-бобах, молоке, бананах, меде, миндале, рыбном филе, фасоли, горохе, орехах, крупах, зелени, морепродуктах.
Недостаток хрома вызывает тревожность, потенцируя чувство беспокойства. Содержится в кукурузе, черном хлебе, черном чае, мясных блюдах с гарниром из отварного картофеля в мундире и многих других обычных продуктах питания.
Недостаток йода ведет к депрессиям. Хронический дефицит йода с самого раннего возраста может приводить к кретинизму. При дефиците йода страдает память, нарушаются мелкие движения рук, с которыми связано развитие речи, внимание, способность складывать слова в предложения, переработка зрительной и слуховой информации. Источник — водоросли, мидии, креветки, морская капуста, рыба, йодированная соль, шампиньоны.
Цинк, так же как железо, антиоксидант, он защищает клетки мозга от вредных воздействий. Он влияет на все виды обмена, входит в состав белков мозга, контролирует синтез тех белков, которые отвечают за память и обучаемость. Если ребенок стал плохо видеть в темноте, щурится, хотя нет явных нарушений зрения, следует проверить содержание цинка в крови. Цинка много в сельди, макрели, печени, мясе, яйцах, грибах, зерновых, кедровых орешках, семечках тыквы и кунжута. Он лучше усваивается из мясных продуктов, чем из растительной пищи.
Режим питания младшего школьника напрямую связан с распорядком его дня. Значительную часть времени дети проводят в школе. В связи с этим следует учитывать чередование умственных нагрузок и периодов отдыха. В период значительных умственных нагрузок питание должно быть дробным и легкоусвояемым. Плотную часть рациона, сытный обед, поставляющий белки и жиры и требующий долгого переваривания следует перенести на период более или менее продолжительного отдыха.
Примерный режим дня младшего школьника:
- 07.30 — 08.00 Завтрак дома
- 10.00 — 11.00 Горячий завтрак в школе
- 12.00 — 13.00 Обед дома или в школе
- 19.00 — 19.30 Ужин дома
Пища для завтрака не должна быть тяжелой, перенасыщеной жирами. Это может быть рыба, вареное яйцо или омлет, котлета, творог, каша. И обязательно — какие-нибудь овощи или фрукты. Можно дополнить меню чаем, какао с молоком или соком.
Обед должен содержать продукты, богатые белками. Мясо, птица или рыба способствуют наполнению крови аминокислотами, стимулирующими мозговую активность.
За ужином, наоборот, не нужно есть продукты с высоким содержанием белков. Вместо этого хороши углеводы, которые наиболее благоприятно действуют именно незадолго до сна.
Клубника, земляника и черника улучшают координацию движений, концентрацию и кратковременную память.
Очень полезны для развития интеллекта ягоды (клюква, черника, виноград), овощи (белокочанная капуста и свекла) и рыба (лосось, тунец, сардины и жирная сельдь).
Шоколад повышает интеллектуальную активность. Потребление шоколада способствует выработке в организме серотонина — нейромедиатора и биологически активного вещества, нехватка которого может привести к снижению настроения и даже депрессии. Также шоколад содержит стимулятор теобромин, резко повышающий настроение. Горькие сорта шоколада активизируют работу мозга и оказывают положительное воздействие на сердечно-сосудистую систему. Особенно благотворное влияние на работу головного мозга оказывают сорта с повышенным содержанием какао (выше 70%).
Польза орехов неоспорима. Во всех орехах — неповторимый уникальный баланс витаминов и микроэлементов. Они богаты сложными белками, необходимыми для всех тканей. Орехи — источник растительных белков, углеводов, пищевых волокон и жира с высоким содержанием полиненасыщенных жирных кислот, витамина Е, витаминов группы В, калия, магния, кальция, фосфора, железа, марганца, меди и других полезных и необходимых организму веществ. Пищевая ценность орехов обеспечивается благоприятным сочетанием в них белков и жиров; в ореховом белке содержится много незаменимых аминокислот. Благодаря наличию олеиновой кислоты, полиненасыщенных жирных кислот и других веществ орехи полезны для работы мозга. Однако не стоит забывать, что орехи могут вызывать аллергию, поэтому детям их следует давать в очень малых количествах.
8.2 Части мозга, связанные с памятью — вводная психология
Цели обучения
К концу этого раздела вы сможете:
- Объясните функции мозга, участвующие в памяти
- Признать роли гиппокампа, миндалины и мозжечка
Хранятся ли воспоминания только в одной части мозга или они хранятся во многих разных частях мозга? Карл Лэшли начал исследовать эту проблему около 100 лет назад, создавая повреждения в мозге таких животных, как крысы и обезьяны.Он искал свидетельство инграммы: группы нейронов, которые служат «физическим представлением памяти» (Josselyn, 2010). Во-первых, Лэшли (1950) обучил крыс находить путь через лабиринт. Затем он использовал доступные в то время инструменты — в данном случае паяльник — для создания повреждений в мозгу крыс, особенно в коре головного мозга. Он сделал это, потому что пытался стереть инграмму или исходный след воспоминаний крыс о лабиринте.
Лэшли не нашел свидетельств инграммы, и крысы все еще могли найти свой путь через лабиринт, независимо от размера или местоположения поражения.Основываясь на его создании поражений и реакции животных, он сформулировал гипотезу об эквипотенциальности : , если часть одной области мозга, отвечающая за память, повреждена, другая часть той же области может взять на себя эту функцию памяти (Lashley, 1950. ). Хотя ранние работы Лэшли не подтвердили существование инграммы, современные психологи делают успехи в ее поиске.
Многие ученые считают, что весь мозг связан с памятью. Однако после исследования Лэшли другие ученые смогли более внимательно изучить мозг и память.Они утверждали, что память расположена в определенных частях мозга, и определенные нейроны можно распознать по их участию в формировании воспоминаний. Основными частями мозга, связанными с памятью, являются миндалевидное тело, гиппокамп, мозжечок и префронтальная кора.
Рисунок 8.07. Миндалевидное тело участвует в воспоминаниях о страхе и страхе. Гиппокамп связан с декларативной и эпизодической памятью, а также с памятью распознавания. Мозжечок играет роль в обработке процедурных воспоминаний, например, как играть на пианино.Префронтальная кора, кажется, участвует в запоминании семантических задач.Долговременная память представляет собой заключительный этап модели обработки информации, на котором информативные знания хранятся постоянно (идея постоянства памяти будет обсуждаться в следующем разделе). Воспоминания, которые мы храним в сознании и к которым у нас есть доступ, известны как явная память (также известная как декларативная память) и кодируются гиппокампом, энторинальной корой и перигинальной корой, которые являются важными структурами в лимбической системе .Лимбическая система представляет собой набор структур мозга, расположенных по обе стороны от таламуса, непосредственно под корой головного мозга, и важна для множества функций, включая эмоции, мотивацию, долговременную память и обоняние.
В категории явных воспоминаний и псодические воспоминания представляют время, места, связанные эмоции и другую контекстную информацию, составляющую автобиографические события. Эти типы воспоминаний представляют собой последовательности переживаний и прошлых воспоминаний, которые позволяют человеку образно путешествовать во времени, чтобы заново пережить или вспомнить событие, которое произошло в определенное время и в определенном месте.Было продемонстрировано, что эпизодические воспоминания в значительной степени зависят от нейронных структур, которые были активированы во время процедуры, когда происходило событие. Готфрид и его коллеги (2004) использовали сканеры фМРТ для наблюдения за мозговой активностью, когда участники пытались вспомнить изображения, которые они впервые увидели в присутствии определенного запаха. При воспроизведении изображений, которые участники просматривали с сопутствующим запахом, области первичной обонятельной коры (первформная кора) были более активными по сравнению с условиями отсутствия парного запаха (Gottfried, Smith, Rugg & Doland, 2004), предполагая, что воспоминания восстанавливаются путем реактивации области датчиков, которые были активны во время исходного события.Это указывает на то, что сенсорный ввод чрезвычайно важен для эпизодических воспоминаний, которые мы используем, чтобы попытаться воссоздать опыт того, что произошло.
Семантическая память представляет собой второй из трех основных типов явной памяти и относится к общим знаниям о мире, которыми мы обладаем и собираем на протяжении всей нашей жизни. Эти факты о мире, идеях, значениях и концепциях смешаны с нашим опытом эпизодической памяти и подчеркнуты культурными различиями. В области когнитивной нейробиологии существует множество взглядов на места в мозге, где хранятся семантические воспоминания.Согласно одной точке зрения, семантические воспоминания хранятся в тех же нейронных структурах, которые помогают создавать эпизодические воспоминания. Такие области, как медиальные височные доли, гиппокамп и свод, которые кодируют информацию и создают связи с областями коры, где к ним можно будет получить доступ позже. Другое исследование показало, что гиппокамп и соседние структуры лимбической системы более важны для хранения и извлечения семантических воспоминаний, чем области, связанные с двигательной активностью или сенсорной обработкой, используемые во время кодирования (Vargha-Khadem et al., 1997). Еще другие группы предположили, что семантические воспоминания извлекаются из областей лобной коры и сохраняются в областях височной доли (Hartley et al., 2014, Binder et al., 2009). В целом, данные свидетельствуют о том, что многие области мозга связаны с хранением и извлечением явной памяти в отличие от отдельных структур.
Последняя основная группа памяти в категории явной памяти известна как Автобиографическая память . Эта система памяти состоит как из эпизодических, так и из семантических аспектов памяти и представляет собой набор воспоминаний, связанных с самим собой.Это может быть ваша внешность, ваш рост, конкретные важные моменты в вашей жизни или общее представление о вашем представлении о себе. Конкретные места, где хранится этот тип памяти и к которым осуществляется доступ, особенно спорны из-за тесной связи между автобиографической информацией и сознательным опытом. Конвей и Плейделл-Пирс (2000) предложили модель, описывающую автобиографические воспоминания как преходящие ментальные композиции, хранящиеся в системе самопамяти, содержащей автобиографическую базу знаний и текущие цели работающего «я».Согласно этому подходу в системе самопамяти существуют процессы управления, которые модулируют способность связывать информацию с базой самопознания путем постоянного редактирования сигналов, используемых для активации автобиографической памяти. Следовательно, на представления о себе и воспоминаниях, связанных с собой, может влиять контекст самовосприятия во время кодирования памяти. Современные исследования нейровизуализации показывают, что автобиографическая память распределена во многих сложных нейронных сетях, включая группы нейронов рекрутирования в медиальной и вентролатеральной префронтальной коре, а также в медиальной и латеральной височной коре, височно-теменном соединении, задней поясной извилине и мозжечке. (Свобода, Э., Маккиннон, М.С., Левин, Б., 2006).
В отличие от описанных выше систем памяти, относящихся к процессам явного кодирования и извлечения памяти, неявная память , как обсуждалось в предыдущем разделе, относится к воспоминаниям, которые приобретаются и вызываются бессознательно. Современные исследования показали, что мозжечок, базальные ганглии (группа подкорковых структур, связанных с произвольным двигательным контролем, процедурным обучением и эмоциями, а также многими другими формами поведения), моторная кора и различные области коры головного мозга (Дхарани, 2014) связаны с хранением и извлечением неявной памяти.
АМИГДАЛА
Миндалевидное тело — чрезвычайно важная структура для создания и вызова как явной, так и неявной памяти. Основная функция миндалины — регулирование эмоций, таких как страх и агрессия. Миндалевидное тело играет роль в том, как хранятся воспоминания, поскольку на хранение информации влияют эмоции и стресс. Джоселин (2010) объединила нейтральный тон с толчком стопы группе крыс, чтобы оценить страх крыс, связанный с обусловливанием этим тоном. Это вызвало у крыс воспоминания о страхе.После кондиционирования каждый раз, когда крысы слышали тон, они замирали (защитная реакция у крыс), указывая на память о надвигающемся шоке. Затем исследователи вызвали гибель клеток в нейронах боковой миндалины, которая является специфической областью мозга, ответственной за воспоминания о страхе у крыс. Они обнаружили, что память о страхе исчезла (память о страхе исчезла). Из-за своей роли в обработке эмоциональной информации миндалевидное тело также участвует в консолидации памяти: процессе передачи нового обучения в долговременную память.Миндалевидное тело, кажется, облегчает кодирование воспоминаний на более глубоком уровне, когда событие эмоционально возбуждает. Например, с точки зрения модели глубины обработки, разработанной Крейком и Локхартом (1972), недавнее исследование продемонстрировало, что воспоминания, закодированные из образов, которые вызывают эмоциональную реакцию, как правило, запоминаются более точно и легче по сравнению с нейтральными образами (Xu et al., 2014 ). Кроме того, исследование фМРТ продемонстрировало более сильную сопряженную активацию миндалевидного тела и гиппокампа, в то время как кодирование предсказывает более сильную и точную способность вспоминать память (Phelps, 2004).Большая активация миндалевидного тела, предсказывающая более высокую вероятность точного воспоминания, предоставляет доказательства, иллюстрирующие, как ассоциация с эмоциональной реакцией может создавать более глубокий уровень обработки во время кодирования, что приводит к более сильному следу памяти для последующего воспоминания.
В этом выступлении на TED Стив Рамирес и Сюй Лю из Массачусетского технологического института рассказывают об использовании лазерных лучей для управления воспоминаниями о страхе у крыс.
ГИППОКАМП
Гиппокампальное образование состоит из группы субструктур, включая гиппокамп, зубчатую извилину и субикулум, которые расположены внутри височной доли и имеют форму, аналогичную букве C.Вместе эти структуры представляют собой основные области мозга, связанные с формированием долговременных воспоминаний.
Кларк, Зола и Сквайр (2000) экспериментировали с крысами, чтобы узнать, как гиппокамп влияет на обработку памяти. Они создали повреждения в гиппокампе крыс и обнаружили, что крысы продемонстрировали нарушение памяти при выполнении различных задач, таких как распознавание объектов и бег по лабиринту. Они пришли к выводу, что гиппокамп участвует в создании воспоминаний, в частности, нормальной памяти распознавания, а также пространственной памяти (когда задачи памяти подобны тестам на вспоминание).Гиппокамп также передает информацию в корковые области, которые придают воспоминаниям значение и соединяют их с другими битами информации. Кроме того, он также играет главную роль в консолидации памяти: процесс передачи нового обучения в долговременную память.
Травма в этой области препятствует способности формировать новые воспоминания, но существенно не ухудшает их способность извлекать воспоминания, уже сохраненные в качестве долговременных воспоминаний (Hudspeth et al., 2013). Один известный пациент, известный в течение многих лет только как Х.М. удалили левую и правую височные доли (гиппокамп), чтобы помочь контролировать приступы, от которых он страдал в течение многих лет (Corkin, Amaral, González, Johnson, & Hyman, 1997). В результате его декларативная (явная) память была значительно нарушена, и он не мог формировать новые семантические знания. Он потерял способность формировать новые воспоминания, но все еще мог помнить информацию и события, которые произошли до операции. Его история на людях убедительно доказывает, что гиппокамп в основном связан с консолидацией памяти.
Головной мозг и префронтальная кора
Мозжечок играет большую роль в неявных воспоминаниях (процедурная память, моторное обучение и классическая обусловленность). Например, человек с повреждением гиппокампа по-прежнему будет демонстрировать условную реакцию на моргание, когда ему дают серию вдохов воздуха для его глаз. Однако, когда исследователи повредили мозжечок кроликов, они обнаружили, что кролики не были способны обучаться условной реакции моргания глаз (Steinmetz, 1999; Green & Woodruff-Pak, 2000).Этот эксперимент демонстрирует важную роль мозжечка в формировании неявных воспоминаний и условных реакций.
Недавние оценки количества нейронов в различных областях мозга показывают, что в коре головного мозга человека имеется от 21 до 26 миллиардов нейронов (Pelvig et al., 2008) и 101 миллиард нейронов в мозжечке (Andersen, Korbo & Pakkenberg, 1992). , но мозжечок составляет примерно только 10% мозга (Siegelbaum et al., 2013). Мозжечок состоит из множества различных областей, которые получают проекции из разных частей головного и спинного мозга и проецируются в основном на двигательные системы головного мозга в лобных и теменных долях.
В дополнение к вкладу в имплицитную память, условные реакции, мелкую моторику, осанку и координацию, мозжечок также поддерживает внутренние представления о внешнем мире, которые позволяют вам перемещаться по гостиной, чтобы найти ключи в полной темноте, и профессионально. бейсболистам, чтобы координировать свои движения, чтобы они могли ловить мячи с поля.
Другие исследователи использовали изображения мозга для измерения метаболических процессов, включая сканирование позитронно-эмиссионной томографии (ПЭТ), чтобы узнать, как люди обрабатывают и сохраняют информацию.Из этих исследований видно, что префронтальная кора активна во время различных задач, связанных с памятью. В одном исследовании участники должны были выполнить две разные задачи: либо найти букву , а в словах (что считается задачей восприятия), либо классифицировать существительное как живое или неживое (что считается семантической задачей) (Kapur et al. , 1994). Затем участников спросили, какие слова они видели ранее, и они сообщили, что лучше запоминают семантическую задачу по сравнению с задачей восприятия.По данным ПЭТ-сканирования, в семантической задаче было намного больше активации в левой нижней префронтальной коре. В другом исследовании кодирование было связано с левой фронтальной активностью, в то время как получение информации было связано с правой фронтальной областью (Craik et al., 1999).
Другой широко распространенный взгляд на функцию префронтальной коры состоит в том, что она кодирует информацию, относящуюся к задаче, в рабочей памяти (Baddeley, 2003). Многие исследования показали большую активность префронтальной коры в периоды задержки в задачах с рабочей памятью, демонстрируя процессы префронтальной репетиции, ведущие к переходу информации из кратковременной рабочей памяти в долговременную (Wilson et al., 1993; Леви и Гольдман-Ракич, 2000). Более поздняя работа, оценивающая большую префронтальную активность во время задержек задач рабочей памяти, предполагает, что активность префронтальной коры в эти периоды задержки может не быть нейронными сигнатурами кодирования долговременной памяти, но на самом деле могут быть нисходящими сигналами, которые влияют на кодирование в задней сенсорной части и ассоциациях. области, в которых поддерживаются фактические представления рабочей памяти (Lara & Wallis, 2015).
НЕЙРОТРАНСМИТТЕРЫ
Также, по-видимому, существуют определенные нейротрансмиттеры, участвующие в процессе памяти, такие как адреналин, дофамин, серотонин, глутамат и ацетилхолин (Myhrer, 2003).Среди исследователей продолжаются дискуссии и дебаты относительно конкретных ролей, которые играет каждый нейротрансмиттер (Blockland, 1996). Несмотря на то, что определение убедительных причинно-следственных связей между конкретными нейротрансмиттерами и конкретным поведением посредством экспериментального дизайна вызывает много споров, исследователи могут использовать два общих метода, чтобы сделать выводы об этих взаимосвязях.
Первый метод известен как интервенционная стратегия, фармакологические инструменты или повреждения / стимуляция используются на определенных нейротрансмиттерах и их рецепторах.Второй метод известен как корреляционный метод, при котором различные естественные условия (неврологические заболевания, старение), которые влияют на разные системы нейротрансмиттеров, сравниваются на моделях людей или животных. С помощью этих методов было последовательно обнаружено, что несколько групп и путей нейротрансмиттеров важны для множества процессов памяти (Chapoutier, 1989; Decker and McGaugh, 1991). Повторяющаяся активность нейронов приводит к большему высвобождению нейромедиаторов в синапсах и более сильным нейронным связям между группами нейронов, создавая консолидацию памяти.
Также считается, что сильные эмоции вызывают формирование сильных воспоминаний, а более слабые эмоциональные переживания формируют более слабые воспоминания; это называется теорией возбуждения (Кристиансон, 1992). Например, сильные эмоциональные переживания могут вызвать выброс нейротрансмиттеров, а также гормонов, укрепляющих память; поэтому наша память на эмоциональное событие обычно лучше, чем наша память на неэмоциональное событие. Когда люди и животные подвергаются стрессу, мозг выделяет больше нейротрансмиттера , глутамата , который помогает вспомнить стрессовое событие (Szapiro et al, 2003).Это обеспечивает функциональную основу явления, обычно называемого флэш-памятью.
глутаматРанние исследования функциональных свойств глутамата использовали соединение, известное как пролин, для изучения реакции сетчатки глаза птиц. Черкин, Эккард и Гербрандт (1976) обнаружили, что введение пролина снижает обучаемость и память у птиц, предполагая, что, поскольку пролин действует как антагонист глутамата (уменьшая высвобождение глутамата в синапсе), глутамат должен участвовать в некоторых процессах, связанных с к обучению и памяти.В дальнейших исследованиях использовались другие антагонисты глутамата, чтобы продемонстрировать, что в целом уменьшение количества глутамата в синапсе снижает способность к обучению и формированию воспоминаний. В ответ на это раннее исследование, дальнейшие исследования суммировали важный процесс, связанный с обучением и памятью, известный как долгосрочное потенцирование. Этот процесс основан на стимуляции глутаматных путей в головном мозге (Malenka and Nicoll, 1999). Кроме того, состояния человека, связанные с серьезным нарушением обучения и памяти, всегда были связаны со значительным отсутствием глутаматных нейротрансмиттеров и рецепторов.Сквайр (1986) обнаружил пониженное количество рецепторов глутамата в гиппокампе пациентов с амнезией, а Хайман и его коллеги (1987) задокументировали, что крайнее сокращение глутаминергических нейронов в энторинальной коре и гиппокампе представляет собой отличительную особенность болезни Альцгеймера.
ГАМК (гамма-аминомасляная кислота)До открытия бензодиазепинов, ГАМК практически игнорировалась с точки зрения ее влияния на процессы обучения и памяти. В конечном итоге было обнаружено, что бензодиазепины управляют активностью ГАМК в отношении одного из ее различных типов рецепторов (ГАМК А ), а также вызывают серьезные нарушения обучения (Lister, 1985).McGaugh (1989) использовал местное введение соединений, продуцирующих ГАМК (агонистов) или ингибирующих соединений (антагонистов), демонстрируя, что они могут избирательно вызывать ухудшение или улучшение обучения и памяти в зависимости от того, использовали ли они агонист ГАМК (нарушения обучения и памяти) или антагонисты ГАМК (обучение и улучшения памяти). Это исследование предполагает ингибирующую природу ГАМК. В частности, снижение уровня ГАМК в синапсе или сильное ингибирование высвобождения ГАМК может увеличить скорость обмена между клетками, что приведет к более длительной потенциации и, таким образом, к обучению и консолидации памяти.
АцетилхолинИсследования с использованием фармакологических методов для снижения количества ацетилхолина в синапсе (с помощью соединений, которые ингибируют ацетилхолин или соединений, полностью блокирующих рецепторы ацетилхолина) в рамках задач обучения человека и животных моделей обнаружили когнитивные нарушения, связанные с обучением и памятью (Deutsch, 1983, Койл и др., 1983). Chapoutier (1989) дополнительно обнаружил, что нарушение памяти у людей с болезнью Паркинсона коррелирует с функционированием ацетилхолина во фронтальной коре головного мозга.Уинсон (1990) представил доказательства того, что функция ацетилхолина может модулировать ритмическую электрическую активность мозга (особенно в тета- и гамма-частотах), которые важны для достижения оптимальной скорости возбуждения, ведущей к долгосрочному потенцированию.
Катехоламины и серотонинБыло зарегистрировано, что катехоламиновые системы, такие как адреналин, норэпинефрин и дофамин, задействуются во время пространственного обучения и восстановления памяти, а блокирование высвобождения ацетилхолина снижает функцию катехоламиновой системы (Brandeis, Brandys & Yehuda, 1989).Hatfield и McGaugh (1999) также продемонстрировали, используя задачу водного лабиринта, что истощение норадреналина влияет на процессы консолидации, делая след памяти менее стабильным (хуже вспоминать позже) и более восприимчивым к помехам. Было продемонстрировано, что другие химические соединения, которые действуют как нейротрансмиттеры для связывания с рецепторными участками, играют роль в консолидации и воспроизведении памяти (D’Hooge & De Deyn, 2001), предполагая, что многие различные системы работают вместе и противостоят друг другу, чтобы модулировать нашу способность кодировать и закрепить долговременные воспоминания.
ЭМОЦИИ И ЛОЖНЫЕ ВОСПОМИНАНИЯA flashbulb memory — это очень подробное, исключительно яркое эпизодическое воспоминание об обстоятельствах, связанных с услышанной неожиданной, важной или эмоционально возбуждающей новостью. Однако даже воспоминания о вспышках со временем могут терять точность, даже при очень важных событиях. Например, как минимум трижды, когда его спросили, откуда он узнал о террористических атаках 11 сентября, президент Джордж У.Буш ответил неточно. В январе 2002 года, менее чем через 4 месяца после терактов, тогдашнего президента Буша спросили, как он узнал о терактах. Он ответил:
Я сидел там и мой начальник штаба — ну, во-первых, когда мы вошли в класс, я увидел, как этот самолет влетел в первое здание. Был включен телевизор. И вы знаете, я подумал, что это ошибка пилота, и был поражен, что кто-то мог совершить такую ужасную ошибку. (Гринберг, 2004 г., стр. 2)
Вопреки тому, что вспоминал президент Буш, никто не видел первого сбитого самолета, кроме людей, лежавших на земле возле башен-близнецов.Первый самолет не снимали на видео, потому что это было обычное утро вторника в Нью-Йорке, до первого сбития самолета.
Некоторые люди связывали ошибочное воспоминание Буша об этом событии с теориями заговора. Однако есть гораздо более мягкое объяснение: человеческая память, даже воспоминания от фотовспышек, может быть хрупкой. На самом деле память может быть настолько хрупкой, что мы можем убедить человека в том, что с ним произошло событие, даже если этого не произошло. В исследовании участникам был дан список из 15 слов, связанных со сном, но слова «сон» в списке не было.Участники вспомнили, что слышали слово «сон», хотя на самом деле они его не слышали (Roediger & McDermott, 2000). Открывшие это исследователи назвали теорию в честь себя и коллег-исследователя, назвав ее парадигмой Диза-Рёдигера-Макдермотта .
РЕЗЮМЕНачиная с Карла Лэшли, исследователи и психологи искали инграмму, которая является физическим следом памяти. Лэшли не нашел инграмму, но предположил, что воспоминания распределяются по всему мозгу, а не хранятся в одной конкретной области.Теперь мы знаем, что три области мозга действительно играют важную роль в обработке и хранении различных типов воспоминаний: мозжечок, гиппокамп и миндалевидное тело. Задача мозжечка — обрабатывать процедурные воспоминания; в гиппокампе закодированы новые воспоминания; миндалевидное тело помогает определить, какие воспоминания хранить, и играет роль в определении того, где хранятся воспоминания, в зависимости от того, есть ли у нас сильная или слабая эмоциональная реакция на событие. Сильные эмоциональные переживания могут вызвать выброс нейротрансмиттеров, а также гормонов, которые укрепляют память, поэтому память на эмоциональное событие обычно сильнее, чем память на неэмоциональное событие.Об этом свидетельствует то, что известно как феномен фотовспышки: наша способность запоминать важные жизненные события. Однако наша память на жизненные события (автобиографическая память) не всегда точна.
Артикул:
Текст Психологии Openstax Кэтрин Дампер, Уильям Дженкинс, Арлин Лакомб, Мэрилин Ловетт и Мэрион Перлмуттер под лицензией CC BY v4.0. https://openstax.org/details/books/psychology
Упражнения
Обзорные вопросы:
1. ________ — другое название кратковременной памяти.
а. сенсорная память
г. эпизодическая память
г. рабочая память
г. неявная память
2. Емкость долговременной памяти ________.
а. один или два бита информации
г. семь бит, плюс-минус два
г. ограничено
г. по существу безграничный
3. Три функции памяти: ________.
а. автоматическая обработка, легкая обработка и хранение
г. кодирование, обработка и хранение
г. автоматическая обработка, легкая обработка и извлечение
г. кодирование, хранение и поиск
4. Этот физический след памяти известен как ________.
а. инграмма
г. Эффект Лэшли
г. Deese-Roediger-McDermott Paradigm
г. вспышка с эффектом памяти
5. Исключительно четкое воспоминание о важном событии — это (а) ________.
а. инграмма
г. теория возбуждения
г. flashbulb памяти
г. гипотеза эквипотенциальности
Вопросы критического мышления:
1. Что может случиться с вашей системой памяти, если вы получите повреждение гиппокампа?
Персональные вопросы по заявкам:
1. Опишите вспышкой воспоминания о важном событии в вашей жизни.
Глоссарий:
теория возбуждения
энграмма
Гипотеза эквипотенциальности
флэш-память
Ответы к упражнениям
Обзорные вопросы:
1. C
2. D
3. D
4. А
5.C
Вопросы критического мышления:
1. Поскольку ваш гиппокамп, кажется, больше обрабатывает ваши явные воспоминания, повреждение этой области может сделать вас неспособным обрабатывать новые декларативные (явные) воспоминания; однако даже с этой потерей вы сможете создавать неявные воспоминания (процедурную память, моторное обучение и классическую обусловленность).
Глоссарий:
теория возбуждения: сильные эмоции вызывают формирование сильных воспоминаний, а более слабые эмоциональные переживания формируют более слабые воспоминания
энграмма: физический след памяти
Гипотеза эквипотенциальности: Некоторые части мозга могут замещать поврежденные части при формировании и хранении воспоминаний
флэш-память: исключительно четкое воспоминание о важном событии
нейробиологов определили мозговые цепи, необходимые для формирования памяти | MIT News
Когда мы навещаем друга или идем на пляж, наш мозг хранит кратковременную память об этом опыте в части мозга, называемой гиппокампом.Эти воспоминания позже «консолидируются», то есть передаются в другую часть мозга для более длительного хранения.
Новое исследование MIT нейронных цепей, лежащих в основе этого процесса, впервые показывает, что воспоминания фактически формируются одновременно в гиппокампе и в месте долговременного хранения в коре головного мозга. Однако долговременные воспоминания остаются «молчаливыми» около двух недель, прежде чем они достигнут зрелого состояния.
«Этот и другие открытия в этой статье обеспечивают комплексный схемный механизм для консолидации памяти», — говорит Сусуму Тонегава, профессор биологии и нейробиологии Пикауэра, директор Центра генетики нейронных цепей RIKEN-MIT в Институте Пикауэра. Обучение и память и старший автор исследования.
Результаты, опубликованные 6 апреля в журнале Science , могут потребовать некоторого пересмотра доминирующих моделей того, как происходит консолидация памяти, говорят исследователи.
Ведущими авторами статьи являются научный сотрудник Такаши Китамура, постдок Сачи Огава и аспирант Дирадж Рой. Другие авторы — постдоки Терухиро Окуяма и Марк Моррисси, технический сотрудник Лиллиан Смит и бывший постдок Роджер Редондо.
Долговременное хранение
Начиная с 1950-х годов, проводились исследования известного пациента с амнезией Генри Молисона, известного тогда только как Пациент Х.М., выяснил, что гиппокамп необходим для формирования новых долговременных воспоминаний. Молисон, чей гиппокамп был поврежден во время операции, призванной помочь контролировать его эпилептические припадки, больше не мог хранить новые воспоминания после операции. Тем не менее, он все еще мог получить доступ к некоторым воспоминаниям, которые были сформированы до операции.
Это предполагает, что долгосрочные эпизодические воспоминания (воспоминания о конкретных событиях) хранятся вне гиппокампа. Ученые считают, что эти воспоминания хранятся в неокортексе, части мозга, которая также отвечает за когнитивные функции, такие как внимание и планирование.
Нейробиологи разработали две основные модели для описания того, как воспоминания передаются из кратковременной памяти в долговременную. Самая ранняя, известная как стандартная модель, предполагает, что кратковременные воспоминания изначально формируются и хранятся только в гиппокампе, а затем постепенно переносятся на долговременное хранение в неокортекс и исчезают из гиппокампа.
Более новая модель, модель множественных следов, предполагает, что следы эпизодических воспоминаний остаются в гиппокампе.Эти следы могут хранить детали памяти, в то время как более общие контуры хранятся в неокортексе.
До недавнего времени не существовало хорошего способа проверить эти теории. Большинство предыдущих исследований памяти было основано на анализе того, как повреждение определенных областей мозга влияет на воспоминания. Однако в 2012 году лаборатория Тонегавы разработала способ маркировать клетки, называемые энграммными клетками, которые содержат определенные воспоминания. Это позволяет исследователям отслеживать цепи, участвующие в хранении и извлечении памяти.Они также могут искусственно реактивировать воспоминания с помощью оптогенетики — техники, которая позволяет им включать и выключать клетки-мишени с помощью света.
В новом исследовании Science исследователи использовали этот подход для маркировки клеток памяти у мышей во время события, вызывающего страх, то есть легкого поражения электрическим током, когда мышь находится в определенной камере. Затем они могли использовать свет для искусственной реактивации этих ячеек памяти в разное время и посмотреть, спровоцировала ли эта реактивация поведенческий ответ у мышей (замораживание на месте).Исследователи также смогли определить, какие клетки памяти были активными, когда мышей поместили в камеру, где возникло условное обозначение страха, побуждающее их естественным образом вспомнить воспоминания.
Исследователи обозначили клетки памяти в трех частях мозга: гиппокампе, префронтальной коре и базолатеральной миндалине, в которой хранятся эмоциональные ассоциации воспоминаний.
Всего через день после события, вызывающего страх, исследователи обнаружили, что воспоминания об этом событии сохраняются в клетках инграммы как в гиппокампе, так и в префронтальной коре.Однако клетки инграммы в префронтальной коре были «молчаливыми» — они могли стимулировать замораживание при искусственной активации светом, но они не срабатывали во время естественного вызова памяти.
«Префронтальная кора уже содержала определенную информацию памяти», — говорит Китамура. «Это противоречит стандартной теории консолидации памяти, которая гласит, что вы постепенно переносите воспоминания. Память уже есть ».
В течение следующих двух недель клетки молчащей памяти в префронтальной коре постепенно созревали, что отражалось в изменениях их анатомии и физиологической активности, до тех пор, пока клетки не стали необходимы животным, чтобы естественным образом вспомнить событие.К концу того же периода клетки инграммы гиппокампа замолчали и больше не требовались для естественного воспроизведения. Однако следы воспоминаний остались: реактивация этих клеток светом все еще заставляла животных замерзать.
В базолатеральной миндалине после формирования воспоминаний клетки инграммы оставались неизменными на протяжении всего эксперимента. Эти клетки, необходимые для вызова эмоций, связанных с определенными воспоминаниями, общаются с клетками инграммы как в гиппокампе, так и в префронтальной коре.
Пересмотр теории
Результаты показывают, что традиционные теории консолидации могут быть неточными, потому что воспоминания формируются быстро и одновременно в префронтальной коре и гиппокампе в день тренировки.
«Они формируются параллельно, но потом идут разными путями. Префронтальная кора становится сильнее, а гиппокамп — слабее », — говорит Моррисси.
«Эта статья ясно показывает, что с самого начала инграммы формируются в префронтальной коре», — говорит Пол Франкланд, главный исследователь лаборатории нейробиологии больницы для больных детей в Торонто, который не принимал участия в исследовании. .«Это ставит под сомнение представление о движении следа памяти из гиппокампа в кору и подчеркивает, что эти цепи задействованы вместе одновременно. По мере того как воспоминания стареют, баланс задействованных цепей меняется, когда воспоминания вызываются ».
Необходимы дальнейшие исследования, чтобы определить, полностью ли исчезают воспоминания из клеток гиппокампа или остаются какие-то следы. Прямо сейчас исследователи могут контролировать клетки инграмм только около двух недель, но они работают над адаптацией своей технологии для работы в течение более длительного периода.
Китамура считает, что какой-то след памяти может оставаться в гиппокампе на неопределенное время, сохраняя детали, которые извлекаются лишь изредка. «Чтобы различить два похожих эпизода, эта безмолвная инграмма может реактивироваться, и люди могут получить подробную эпизодическую память даже в очень отдаленные моменты времени», — говорит он.
Исследователи также планируют продолжить изучение процесса созревания инграммы префронтальной коры. Это исследование уже показало, что связь между префронтальной корой и гиппокампом имеет решающее значение, потому что блокирование цепи, соединяющей эти две области, препятствует правильному созреванию корковых клеток памяти.
Исследование финансировалось RIKEN Brain Science Institute, Медицинским институтом Говарда Хьюза и Фондом JPB.
частей мозга, связанных с памятью — Психология
OpenStaxCollege
[latexpage]
Цели обучения
К концу этого раздела вы сможете:
- Объясните функции мозга, участвующие в памяти
- Признать роли гиппокампа, миндалины и мозжечка
Хранятся ли воспоминания только в одной части мозга или они хранятся во многих разных частях мозга? Карл Лэшли начал исследовать эту проблему около 100 лет назад, создавая повреждения в мозге таких животных, как крысы и обезьяны.Он искал свидетельство инграммы: группы нейронов, которые служат «физическим представлением памяти» (Josselyn, 2010). Во-первых, Лэшли (1950) обучил крыс находить путь через лабиринт. Затем он использовал доступные в то время инструменты — в данном случае паяльник — для создания повреждений в мозгу крыс, особенно в коре головного мозга. Он сделал это, потому что пытался стереть инграмму или исходный след воспоминаний крыс о лабиринте.
Лэшли не нашел свидетельств инграммы, и крысы все еще могли найти свой путь через лабиринт, независимо от размера или местоположения поражения.Основываясь на его создании повреждений и реакции животных, он сформулировал гипотезу эквипотенциальности: если часть одной области мозга, отвечающая за память, повреждена, другая часть той же области может взять на себя эту функцию памяти (Lashley, 1950). Хотя ранние работы Лэшли не подтвердили существование инграммы, современные психологи делают успехи в ее поиске. Эрик Кандел, например, десятилетиями работал над синапсом, базовой структурой мозга и его ролью в управлении потоком информации через нейронные цепи, необходимой для хранения воспоминаний (Mayford, Siegelbaum, & Kandel, 2012).
Многие ученые считают, что весь мозг связан с памятью. Однако после исследования Лэшли другие ученые смогли более внимательно изучить мозг и память. Они утверждали, что память расположена в определенных частях мозга, и определенные нейроны можно распознать по их участию в формировании воспоминаний. Основными частями мозга, связанными с памятью, являются миндалевидное тело, гиппокамп, мозжечок и префронтальная кора ([ссылка]).
Миндалевидное тело участвует в воспоминаниях о страхе и страхе.Гиппокамп связан с декларативной и эпизодической памятью, а также с памятью распознавания. Мозжечок играет роль в обработке процедурных воспоминаний, например, как играть на пианино. Префронтальная кора, кажется, участвует в запоминании семантических задач.
Во-первых, давайте посмотрим на роль миндалины в формировании памяти. Основная функция миндалины — регулирование эмоций, таких как страх и агрессия ([ссылка]). Миндалевидное тело играет роль в том, как хранятся воспоминания, потому что на хранение влияют гормоны стресса.Например, один исследователь экспериментировал с крысами и реакцией страха (Josselyn, 2010). Используя метод Павлова, нейтральный тон был соединен с крысами в паре с ударом ногой. Это вызвало у крыс воспоминания о страхе. После кондиционирования каждый раз, когда они слышали тон, они замирали (защитная реакция у крыс), указывая на память о надвигающемся шоке. Затем исследователи вызвали гибель клеток в нейронах боковой миндалины, которая является специфической областью мозга, ответственной за воспоминания о страхе.Они обнаружили, что воспоминания о страхе исчезли (вымерли). Из-за своей роли в обработке эмоциональной информации миндалевидное тело также участвует в консолидации памяти: процессе передачи нового обучения в долговременную память. Миндалевидное тело, кажется, облегчает кодирование воспоминаний на более глубоком уровне, когда событие эмоционально возбуждает.
В этом выступлении TED под названием «Мышь. Лазерный луч. Манипулируемая память », — Стив Рамирес и Сюй Лю из Массачусетского технологического института рассказывают об использовании лазерных лучей для управления памятью о страхе у крыс.Узнайте, почему их работа вызвала ажиотаж в СМИ после того, как она была опубликована в Science .
Другая группа исследователей также экспериментировала с крысами, чтобы узнать, как гиппокамп функционирует при обработке памяти ([ссылка]). Они создали повреждения в гиппокампе крыс и обнаружили, что крысы продемонстрировали нарушение памяти при выполнении различных задач, таких как распознавание объектов и бег по лабиринту. Они пришли к выводу, что гиппокамп участвует в памяти, в частности, в нормальной памяти распознавания, а также в пространственной памяти (когда задачи памяти похожи на тесты на вспоминание) (Clark, Zola, & Squire, 2000).Другая задача гиппокампа — проецировать информацию на корковые области, которые придают воспоминаниям значение и связывают их с другими связанными воспоминаниями. Это также играет роль в консолидации памяти: процесс передачи нового обучения в долговременную память.
Повреждение этой области лишает нас возможности обрабатывать новые декларативные воспоминания. У одного известного пациента, известного в течение многих лет только как HM, удалили левую и правую височные доли (гиппокамп) в попытке помочь контролировать приступы, от которых он страдал в течение многих лет (Corkin, Amaral, González, Johnson, & Hyman, 1997).В результате его декларативная память сильно пострадала, и он не мог формировать новые семантические знания. Он потерял способность формировать новые воспоминания, но все еще мог помнить информацию и события, которые произошли до операции.
Чтобы подробнее узнать, как работает память, просмотрите это видео о причудах памяти и прочтите больше в этой статье о пациенте HM.
Хотя гиппокамп, кажется, больше обрабатывает явные воспоминания, вы все равно можете потерять его и иметь возможность создавать неявные воспоминания (процедурная память, моторное обучение и классическая обусловленность) благодаря мозжечку ([ссылка]).Например, один классический эксперимент с кондиционированием заключается в том, чтобы приучить испытуемых моргать, когда им дают вдохнуть воздух. Когда исследователи повредили мозжечок кроликов, они обнаружили, что кролики неспособны выучить условную реакцию моргания глаз (Steinmetz, 1999; Green & Woodruff-Pak, 2000).
Другие исследователи использовали сканирование мозга, в том числе позитронно-эмиссионную томографию (ПЭТ), чтобы узнать, как люди обрабатывают и сохраняют информацию. Судя по этим исследованиям, в дело вовлечена префронтальная кора.В одном исследовании участники должны были выполнить две разные задачи: либо поиск буквы a в словах (что считается задачей восприятия), либо категоризация существительного как живого или неживого (что считается семантической задачей) (Kapur et al. , 1994). Затем участников спросили, какие слова они видели ранее. Напоминание было намного лучше для семантической задачи, чем для задачи восприятия. По данным ПЭТ-сканирования, в семантической задаче было намного больше активации в левой нижней префронтальной коре.В другом исследовании кодирование было связано с левой фронтальной активностью, в то время как получение информации было связано с правой фронтальной областью (Craik et al., 1999).
Также, по-видимому, существуют определенные нейротрансмиттеры, участвующие в процессе памяти, такие как адреналин, дофамин, серотонин, глутамат и ацетилхолин (Myhrer, 2003). Среди исследователей продолжаются дискуссии и дебаты относительно того, какой нейромедиатор играет конкретную роль (Blockland, 1996). Хотя мы еще не знаем, какую роль каждый нейротрансмиттер играет в памяти, мы знаем, что коммуникация между нейронами через нейротрансмиттеры имеет решающее значение для развития новых воспоминаний.Повторяющаяся активность нейронов приводит к увеличению количества нейромедиаторов в синапсах и более эффективным и более синаптическим связям. Так происходит консолидация памяти.
Также считается, что сильные эмоции вызывают формирование сильных воспоминаний, а более слабые эмоциональные переживания формируют более слабые воспоминания; это называется теорией возбуждения (Christianson, 1992). Например, сильные эмоциональные переживания могут вызвать выброс нейротрансмиттеров, а также гормонов, укрепляющих память; поэтому наша память на эмоциональное событие обычно лучше, чем наша память на неэмоциональное событие.Когда люди и животные подвергаются стрессу, мозг выделяет больше нейротрансмиттера глутамата, что помогает им вспомнить стрессовое событие (McGaugh, 2003). Об этом наглядно свидетельствует так называемый феномен фотовспышки.
Флэш-память — это исключительно четкое воспоминание о важном событии ([ссылка]). Где вы были, когда впервые услышали о терактах 11 сентября? Скорее всего, вы можете вспомнить, где вы были и чем занимались. Фактически, опрос Pew Research Center (2011) показал, что 97% американцев, которым на момент события было 8 лет и старше, могут вспомнить момент, когда они узнали об этом событии, даже через десять лет после того, как оно произошло.
Большинство людей могут вспомнить, где они были, когда впервые услышали о терактах 11 сентября. Это пример фотовспышки: запись нетипичного и необычного события, имеющего очень сильные эмоциональные ассоциации. (кредит: Майкл Форан)
Неточные и ложные воспоминания
Даже воспоминания о вспышках со временем могут терять точность, даже при очень важных событиях. Например, как минимум трижды, когда его спросили, откуда он узнал о террористических атаках 11 сентября, президент Джордж У.Буш ответил неточно. В январе 2002 года, менее чем через 4 месяца после терактов, тогдашнего президента Буша спросили, как он узнал о терактах. Он ответил:
Я сидел там и мой начальник штаба — ну, во-первых, когда мы вошли в класс, я увидел, как этот самолет влетел в первое здание. Был включен телевизор. И вы знаете, я подумал, что это ошибка пилота, и был поражен, что кто-то мог совершить такую ужасную ошибку. (Гринберг, 2004, стр. 2)
Вопреки тому, что вспоминал президент Буш, никто не видел первого сбитого самолета, кроме людей, лежавших на земле возле башен-близнецов.Первый самолет не снимали на видео, потому что это было обычное утро вторника в Нью-Йорке, до первого сбития самолета.
Некоторые люди связывали ошибочное воспоминание Буша об этом событии с теориями заговора. Однако есть гораздо более мягкое объяснение: человеческая память, даже воспоминания от фотовспышек, может быть хрупкой. На самом деле память может быть настолько хрупкой, что мы можем убедить человека в том, что с ним произошло событие, даже если этого не произошло. В исследованиях участники будут помнить, что слышали слово, даже если они никогда не слышали его.Например, участникам был дан список из 15 слов, связанных со сном, но слова «сон» в списке не было. Участники вспомнили, что слышали слово «сон», хотя на самом деле они его не слышали (Roediger & McDermott, 2000). Открывшие это исследователи назвали теорию в честь себя и коллег-исследователя, назвав ее парадигмой Диза-Рёдигера-Макдермотта.
Начиная с Карла Лэшли, исследователи и психологи искали инграмму, которая является физическим следом памяти.Лэшли не нашел инграмму, но предположил, что воспоминания распределяются по всему мозгу, а не хранятся в одной конкретной области. Теперь мы знаем, что три области мозга действительно играют важную роль в обработке и хранении различных типов воспоминаний: мозжечок, гиппокамп и миндалевидное тело. Задача мозжечка — обрабатывать процедурные воспоминания; в гиппокампе закодированы новые воспоминания; миндалевидное тело помогает определить, какие воспоминания хранить, и играет роль в определении того, где хранятся воспоминания, в зависимости от того, есть ли у нас сильная или слабая эмоциональная реакция на событие.Сильные эмоциональные переживания могут вызвать выброс нейротрансмиттеров, а также гормонов, которые укрепляют память, поэтому память на эмоциональное событие обычно сильнее, чем память на неэмоциональное событие. Об этом свидетельствует то, что известно как феномен фотовспышки: наша способность запоминать важные жизненные события. Однако наша память на жизненные события (автобиографическая память) не всегда точна.
Этот физический след памяти известен как ________.
- энграмма
- Эффект Лэшли
- Парадигма Диза-Рёдигера-Макдермотта
- Эффект памяти вспышки
Исключительно четкое воспоминание о важном событии — это (а) ________.
- энграмма
- теория возбуждения
- флэш-память
- Гипотеза эквипотенциальности
Что может случиться с вашей системой памяти, если вы получите повреждение гиппокампа?
Поскольку ваш гиппокамп, кажется, больше обрабатывает ваши явные воспоминания, повреждение этой области может сделать вас неспособным обрабатывать новые декларативные (явные) воспоминания; однако даже с этой потерей вы сможете создавать неявные воспоминания (процедурную память, моторное обучение и классическую обусловленность).
Опишите вспышкой воспоминания о значительном событии в вашей жизни.
Глоссарий
- теория возбуждения
- сильные эмоции вызывают формирование сильных воспоминаний, а более слабые эмоциональные переживания формируют более слабые воспоминания
- энграмма
- физическая трассировка памяти
- гипотеза эквипотенциальности
- некоторые части мозга могут заменять поврежденные части при формировании и хранении воспоминаний
- флэш-память
- исключительно четкое воспоминание о важном событии
Как развивается наша память — Любопытно
Вы когда-нибудь задумывались, почему не можете вспомнить, что были младенцем? Или почему вы можете легко запомнить все слова песни, которую выучили в подростковом возрасте, даже если это было 20 (или более) лет назад?
Ответы на эти вопросы могут заключаться в том, как наша система памяти развивается по мере того, как мы превращаемся из младенца в подростка и в раннюю взрослую жизнь.Когда мы рождаемся, наш мозг еще не полностью развит — он продолжает расти и меняться в этот важный период нашей жизни. И по мере развития нашего мозга развивается и наша память. Давайте побродим по переулку памяти и посмотрим.
Эм … Что еще за воспоминание?
Во-первых, краткий обзор основ.
- Память — это не видеокамера
Многие из нас думают о нашей памяти как о записывающем устройстве, например, о видеокамере.Мы представляем, как он точно записывает события в деталях, которые мы можем на более позднем этапе извлечь, просто нажав кнопку «воспроизведение».
Но это представление видеокамеры о памяти не совсем точное. Это потому, что воспоминания — это не просто статические записи, к которым можно получить доступ. Скорее, воспоминания динамичны — они всегда меняются. Со временем они могут становиться сильнее или слабее. Они могут искажаться, и ими можно манипулировать. То, что мы помним и как мы запоминаем, зависит от того, когда мы запоминаем, и какой смысл и опыт мы привносим в это воспоминание.Фактически, каждый раз, когда мы что-то вспоминаем, мы немного меняем это воспоминание.
- Воспоминания создаются при срабатывании нейронов
Нейроны — это нервные клетки, которые посылают друг другу электрохимические сигналы. Когда человек обрабатывает событие, нейроны мозга передают информацию через синапсы (крошечные промежутки между нейронами). Это побуждает окружающие нейроны начать активироваться, создавая сеть соединений различной силы. Именно это постоянное изменение силы и структуры связей является «воспоминанием».
- Существуют разные виды памяти
Существует несколько типов памяти. Это может быть явное (осознанное запоминание) или неявное (бессознательное). Вы умеете запоминать факты и цифры? Это то, что называется вашей семантической памятью. Сможете ли вы избить своего партнера в Pacman, даже не задумываясь, даже если вы не играли много лет? Вы можете поблагодарить свою процедурную память, которая связана с приобретенными двигательными навыками.
- Воспоминания хранятся в разных, взаимосвязанных частях мозга
- Воспоминания не хранятся в одном месте мозга.Скорее, разные (взаимосвязанные) части мозга специализируются на разных типах воспоминаний. Например, область мозга, называемая гиппокампом, важна для хранения воспоминаний об определенных событиях, произошедших в вашей жизни, известных как эпизодические воспоминания.
- Корпус HM
Захватывающий случай Генри Молезона, известный как «HM», дал ученым возможность понять природу памяти и то, как она хранится в мозге.
В 1950-х годах в качестве лечения эпилепсии, выводящей из строя, HM перенес серьезную операцию, в ходе которой ему удалили гиппокамп и часть прилегающей территории. Процедура уменьшила его припадки, но резко повлияла на его память. Всю оставшуюся жизнь HM не мог формировать какие-либо долговременные воспоминания и не мог вспомнить конкретные автобиографические события из своей жизни. Тем не менее, он все еще мог изучать новые моторные навыки и мог повторять их позже, хотя он не мог вспомнить, как выучил их.
До HM считалось, что когда вы что-то вспоминаете, все нейроны в вашем мозгу работают вместе, чтобы вызвать воспоминание. Но случай с HM показал, что разные области мозга отвечают за разные виды памяти. А гиппокамп, кажется, особенно важен для памяти, особенно конкретных автобиографических событий (эпизодическая память).
Интересно, что единственным исключением из неспособности HM вспомнить автобиографические события было его воспоминание о поездке на самолете в день рождения вокруг Хартфорда, возможно, потому, что это имело огромное эмоциональное значение.
От рождения до подросткового возраста
Младенчество и детство
Можете ли вы вспомнить свой первый день рождения? Ваш второй? Если нет, не паникуйте — вы не одиноки. Взрослые редко помнят события, произошедшие до трехлетнего возраста, и имеют неоднозначные воспоминания, когда речь идет о вещах, которые произошли с ними в возрасте от трех до семи лет. Это явление известно как «детская амнезия».
Так почему же так трудно вспомнить, когда я был младенцем? Просто потому, что наши первый, третий и даже седьмой дни рождения произошли очень давно, и наши воспоминания, естественно, потускнели? Не обязательно. Фактически, 40-летний взрослый обычно имеет очень сильные воспоминания о подростковом возрасте (подробнее об этом позже), который для них произошел более 20 лет назад. С другой стороны, 15-летний подросток вряд ли вспомнит что-то, что произошло, когда им было два года, даже если это произошло всего 13 лет назад.
Что помнят младенцы?
Раньше считалось, что причина того, что мы не можем вспомнить большую часть своего раннего детства, заключается в том, что, будучи маленькими детьми, мы просто не способны стабильно запоминать события. Логика гласит, что нельзя получить доступ к памяти, если ее там нет!
Но оказывается, что младенцы и маленькие дети могут формировать и формируют воспоминания. Сюда входят как неявные воспоминания (например, процедурные воспоминания, которые позволяют нам выполнять задачи, не думая о них), так и явные воспоминания (например, когда мы сознательно вспоминаем событие, которое произошло с нами).
Однако наша способность запоминать вещи в течение длительного времени постепенно улучшается в детстве. Например, в экспериментах, в которых маленьких детей учили имитировать действие, шестимесячные дети могли помнить, что делать в течение 24 (но не 48) часов, в то время как девятимесячные дети могли помнить, что делать в течение одного месяца (но не три месяца) позже. К 20 месяцам младенцы все еще могли помнить, как выполнять задание, которое им показывали годом ранее.
Интересно, что недавнее исследование на крысах показало, что, несмотря на очевидную потерю ранних эпизодических воспоминаний, скрытый след воспоминаний о раннем опыте сохраняется в течение длительного периода времени — и может быть вызван более поздним напоминанием.Это может объяснить, почему ранняя травма может повлиять на поведение взрослых и увеличить риск психических расстройств в будущем.
Ты можешь вспомнить свой первый день рождения? Большинство из нас не могут — это явление известно как детская амнезия. Источник изображения: Джастин МакГрегор / Flickr.Наш меняющийся мозг
Нейробиологи, изучающие память у животных (таких как крысы и обезьяны), обнаружили, что не только люди страдают детской амнезией. Кажется, это обычное явление для животных, чей мозг, как и наш, продолжает развиваться после рождения.При рождении мозг ребенка составляет всего четверть от размера взрослого человека. К двум годам он будет составлять три четверти мозга взрослого человека. Это изменение размера коррелирует с ростом нейронов, а также с тестированием и сокращением связей (подробнее об этом позже). Итак, что означает для нашей памяти тот факт, что наш мозг все еще развивается в младенчестве и раннем детстве?
Детская амнезия, по-видимому, обычна для животных, мозг которых продолжает развиваться после рождения. Источник изображения: Имтиаз Ахмед / Flickr.Давайте взглянем на гиппокамп — ту часть мозга, которая особенно важна в формировании эпизодических воспоминаний (воспоминаний о событиях, которые произошли с нами). Хотя многие части мозга продолжают развиваться и изменяться после того, как мы родились, это одна из немногих областей, которые продолжают производить новые нейроны во взрослом возрасте. Например, когда мы маленькие, часть гиппокампа, называемая зубчатой извилиной, находится в состоянии перегрузки, производя нейроны с большой скоростью. Затем эти новые нейроны интегрируются в цепи гиппокампа.Хотя производство новых нейронов продолжается и во взрослом возрасте, скорость их активности снижается.
Ученые считают, что такая высокая скорость производства нейронов в детстве может способствовать более высокому уровню забвения в молодом возрасте. Как? Формируя новые связи со схемами памяти, массы новых нейронов могут нарушить существующие сети уже сформированных воспоминаний.
Просмотр эмоционального фильма после учебы может помочь вам получить более высокие оценки. Источник изображения: charamelody / Flickr.- Почувствуй, запомни
Подумайте о действительно сильных воспоминаниях. Скорее всего, вы вспомните время, которое было особенно счастливым, особенно грустным или очень страшным. Именно эти эмоциональные переживания формируют наши самые яркие воспоминания.
Но почему эмоциональные воспоминания, как хорошие, так и плохие, настолько сильны? Ответ кроется в небольшой структуре мозга, называемой миндалевидным телом (произносится как у-миг-да-ла), эмоциональным центром мозга. Возможно, вы слышали о миндалевидном теле в связи со стрессом или тревогой.Это часть мозга, которая активируется в ответной реакции «бей или беги», вызывая выброс гормонов стресса, которые заставляют ваше сердце биться, готовое убежать от предполагаемой опасности или вступить с ней в бой.
Миндалевидное тело также играет важную роль в создании сильных воспоминаний, придавая им эмоциональное значение. Он запускает гормоны, которые заставляют ваше сердце биться быстрее, а также взаимодействует с гиппокампом, чтобы укрепить память или нейронную запись определенного эмоционального переживания.
Например, в экспериментах в США студентам колледжей после лекции показывали эмоционально возбуждающий фильм. Они показали лучшие результаты на более позднем тесте, чем те, кто смотрел эмоционально нейтральный фильм. Что попробовать на следующем экзамене?
Подростковый возраст
Все еще меняется?
Хотя раннее детство долгое время считалось важным временем для развития мозга, раньше считалось, что все закончилось задолго до того, как мы достигли половой зрелости.Но теперь известно, что наш мозг продолжает развиваться и меняться в период полового созревания и подросткового возраста. В частности, префронтальная кора головного мозга, которая важна для исполнительных функций, таких как контроль нашего поведения, демонстрирует важные изменения в это время. И поскольку эти области нашего мозга продолжают изменяться и развиваться, то же самое происходит и с нашей памятью.
Удар воспоминаний
Слова банальной песни о любви, движения к Макарене, даже скучные повседневные вещи — если это было частью нашей юности, мы с большей вероятностью вспомним их 20, 30 или даже 40 лет спустя.Ряд исследований показал, что у взрослых старше 30 лет больше воспоминаний о юности и раннем взрослении, чем о любом другом периоде их жизни, до или после — явление, известное как «шишка воспоминаний».
Считается, что это происходит потому, что, когда мы формируем новое представление о себе, мы кодируем устойчивые и долговечные воспоминания, которые имеют отношение к этому «я». Другими словами, мы, скорее всего, будем отдавать предпочтение воспоминаниям, которые укрепляют наши представления о том, кто мы есть. Поскольку юность — это ключевое время для появления стабильного и стойкого « я », это также период, который мы запоминаем лучше всего.
Наша склонность вспоминать события (а также книги, фильмы и музыку) подросткового возраста известна как шишка воспоминаний. Источник изображения: Оззи Делани / Flickr.Больше миелина
Вы, наверное, слышали о «сером веществе». Серое вещество, часто используемое в качестве сокращенного обозначения клеток головного мозга, в основном состоит из плотно упакованных нейронов.
Но пройдите под этот «верхний слой» мозга, и вы обнаружите, заполнив почти половину его, массу кабелей связи ( аксоны ), которые соединяют нейроны в разных частях мозга.Это белое вещество. Кабели покрыты жирным веществом, называемым миелином, что придает им белый цвет, который проявляется на МРТ . Миелин действует как изоляция вокруг аксонов, позволяя быстрее передавать сообщения (в виде электрических сигналов) между областями мозга. Чем больше миелина, тем быстрее будут передаваться сообщения.
Благодаря технологии МРТ ученые смогли наблюдать, что происходит с миелином в нашем мозгу в детстве и подростковом возрасте.Они обнаружили, что, хотя сенсорные и двигательные области мозга становятся полностью миелинизированными (покрытыми миелином) в первые несколько лет жизни, миелинизация в нашей лобной коре головного мозга продолжается и в подростковом возрасте.
Синаптический рост и обрезка
В первые несколько месяцев жизни наш мозг занят созданием множества синапсов (связей между нейронами), пока мы не получим намного больше, чем в конечном итоге получим во взрослом возрасте. В течение следующих нескольких лет эти связи постепенно сокращаются.В зависимости от нашего опыта некоторые связи укрепляются, а другие исчезают, пока, в конце концов, плотность наших синапсов не достигнет взрослого уровня.
Но в нашей префронтальной коре кажется, что это происходит во второй раз. По мере того, как мы достигаем половой зрелости, соответствующей бурному периоду роста и обучения в остальной части тела, в мозгу возникает новая волна синаптического разрастания. Затем, по мере прохождения подросткового возраста, эти связи снова сокращаются и реорганизуются.Это сокращение делает существующие связи более эффективными, поэтому это важно для когнитивных процессов, таких как память.
Поскольку наша лобная и префронтальная кора продолжают развиваться таким образом в период полового созревания и подросткового возраста, мы можем ожидать соответствующего улучшения исполнительных функций, связанных с памятью, которые связаны с этими лобными областями нашего мозга. И действительно, это оказалось так: эксперименты показали, что наша производительность при выполнении сложных задач с рабочей памятью продолжает улучшаться в подростковом возрасте, как и наша предполагаемая память (наша способность помнить, что нужно делать в будущем).
- Вехи памяти от рождения до взрослой жизни
- Рождение — 1
- способность запоминать события на короткие промежутки времени (время постепенно увеличивается)
- 1-2
- способность запоминать события все дольше и дольше
- 2-3 года
- декларативная память (память на факты и события) улучшает
- 4-7 лет
- Перспективная память (не забывающая делать что-то в будущем) начинает проявляться
- 8-10 лет
- улучшенный отзыв фактов
- улучшенное воспроизведение пространственных отношений
- 10 — 12 лет
- улучшает долговременную память
- повышение способности сознательно подавлять воспоминания
- 13 — 21 год
- перспективная память улучшает
- рабочая память улучшает
Мы способны к бесконечной памяти, но где в мозгу она хранится и какие части помогают ее извлекать?
Мозг — это ключ к нашему существованию, но предстоит пройти долгий путь, прежде чем нейробиология сможет по-настоящему уловить его потрясающие возможности.А пока в нашей серии «Контроль над мозгом» исследуется то, что мы знаем о команде мозга над шестью центральными функциями: языком, настроением, памятью, зрением, личностью и моторикой, а также о том, что происходит, когда что-то идет не так.
Одна из важнейших функций мозга — кодировать и хранить информацию, которая становится нашей памятью. Наши воспоминания дают нам представление о событиях и знаниях об окружающем мире и влияют на наши действия и поведение, формируя важные аспекты нашей личности.
Есть несколько аспектов и типов воспоминаний. То, что мы обычно называем «памятью» при повседневном использовании, на самом деле является долговременной памятью. Но есть также важные процессы кратковременной и сенсорной памяти, которые необходимы для установления долговременной памяти.
Память обычно делится на две большие категории: явная (декларативная) и неявная (недекларативная) память.
Неявные воспоминания
Неявные или недекларативные воспоминания — это поведение, которое мы усвоили, но не можем выразить словами.Эти воспоминания обычно действуют без осознания, включая навыки, привычки и поведение.
Это поведение работает на автопилоте — например, завязывает шнурки. После того, как вы научились, это легко сделать, но очень сложно сказать кому-то, как вы выполняете эту задачу.
Возможность завязать шнурки — это неявное воспоминание. vistavision / Flickr, CC BYМножественные области мозга формируют неявные воспоминания, поскольку они включают в себя множество реакций, которые необходимо координировать.В формировании этих «моторных» программ участвует ключевая область мозга, называемая базальными ганглиями. Кроме того, мозжечок в задней части черепа играет жизненно важную роль в выборе времени и выполнении выученных, умелых двигательных движений.
Явные воспоминания
Явные или декларативные воспоминания могут быть выражены вербально. К ним относятся воспоминания о фактах и событиях, а также пространственные воспоминания о местах. Эти воспоминания можно вспомнить сознательно и могут быть автобиографическими — например, что вы делали в свой последний день рождения — или концептуальными, например, учебная информация для экзамена.
Эти воспоминания легко приобрести. Однако о них также легко забыть, поскольку они подвержены сбоям в процессе формирования и хранения информации.
Разговор, CC BY-ND
Создание долговременных воспоминаний
Формирование долговечной памяти состоит из нескольких этапов, и информация может быть потеряна (или забыта) в процессе. Модель памяти с несколькими хранилищами предполагает, что долговременные воспоминания состоят из трех этапов.Поступающая информация передается через сенсорную память в кратковременную память, а затем в долговременную память, а не происходит за один раз.
Каждый из различных типов памяти имеет свой особый режим работы, но все они взаимодействуют в процессе запоминания и могут рассматриваться как три необходимых шага в формировании прочной памяти.
Информация, закодированная на каждом из этих шагов, имеет свою продолжительность. Во-первых, мы должны обращать внимание на информацию, которую собираемся кодировать — это сенсорная память.Наше внимание все время переключается, поэтому поступающая информация часто мимолетна — как снимок — но содержит детали звуков, ощущений и изображений.
Кратковременная память, или рабочая память, хранится от секунд до минут и имеет очень ограниченную информационную емкость. Из-за ограниченного объема рабочая память должна регулярно «сбрасывать» информацию. Если эта информация не будет передана в долгосрочное хранилище, она будет забыта.
Требуется пример для запоминания телефонного номера, который можно запомнить на короткое время, но вскоре о нем забывают.Но если эту информацию отрепетировать путем повторения, эта информация может перейти в долговременную память, которая имеет, казалось бы, бесконечную емкость хранения. Это означает, что доступ к информации можно получить гораздо дольше.
Наши долговременные воспоминания — это воспоминания о нашей жизни. Например, этот номер телефона может быть привязан к нашему семейному дому, и его будут помнить на долгие годы.
Многие области мозга играют роль в формировании и хранении декларативной памяти, но двумя основными вовлеченными областями являются гиппокамп, эмоциональный центр и префронтальная кора в самой передней части мозга.
Разговор, CC BY-ND
Префронтальная кора и рабочая память
Префронтальная кора важна в формировании кратковременной или рабочей памяти. Хотя эти кратковременные воспоминания теряются из-за вмешательства в новую поступающую информацию, они важны для планирования поведения и принятия решения о том, какие действия выполнять в зависимости от текущей ситуации.
Гиппокамп и долговременная память
Кратковременную память можно объединить в долговременную память.Это включает в себя систему структур мозга в средней височной доле, которые необходимы для формирования декларативных воспоминаний. Гиппокамп является ключевой областью в медиальной височной доле, и обработка информации через гиппокамп необходима для того, чтобы кратковременная память была закодирована в долговременную память.
Долговременная память не сохраняется постоянно в гиппокампе. Эти долгосрочные воспоминания важны, и хранить их только в одном месте мозга рискованно — повреждение этой области приведет к потере всех наших воспоминаний.
Вместо этого предлагается интегрировать долговременные воспоминания в кору головного мозга (отвечающую за функции высшего порядка, которые делают нас людьми). Этот процесс называется корковой интеграцией; он защищает информацию, хранящуюся в мозгу.
Однако повреждение областей мозга, особенно гиппокампа, приводит к потере декларативных воспоминаний, известной как амнезия.
Репетиция элементов кратковременной памяти может передать их в нашу долговременную память, которая имеет, казалось бы, бесконечную емкость для хранения.g_leon_h / Flickr, CC BYЗнаменитый пример «H.M.» — Генри Молайсон (родился 26 февраля 1926 года и умер 2 декабря 2008 года) — продемонстрировал, что гиппокамп жизненно важен для формирования долговременных воспоминаний. H.M. В 23-летнем возрасте ему удалили гиппокамп в попытке вылечить эпилептические припадки, возникшие в его медиальной височной доле.
Удаление височной доли, включая гиппокамп, привело к неспособности формировать новые воспоминания, известной как антероградная амнезия.Однако кратковременная и процедурная память Х.М. (умение что-то делать, например, двигательные навыки) остались нетронутыми, как и многие его воспоминания до операции.
Разрушающийся мозг
У пациентов с болезнью Альцгеймера развиваются патологии головного мозга, которые повреждают нейроны, особенно в гиппокампе. Они называются нейрофибриллярными клубками и бляшками-амилоидами. Амилоидные бляшки нарушают связь между нейронами. Нейрофибриллярные клубки повреждают транспортную систему нейрона, убивая клетки.
Повреждение нейронов в гиппокампе предотвращает формирование новых воспоминаний, а также разрушает нейроны, которые сформировали сети, кодирующие существующие воспоминания. Это приводит к потере этих воспоминаний, называемой ретроградной амнезией.
По мере того как отмирание нейронов увеличивается, пораженные области мозга начинают сокращаться и истощаться. К заключительным стадиям болезни Альцгеймера повреждения становятся широко распространенными, и большая часть мозговой ткани теряется.
Функционально пациенты с болезнью Альцгеймера теряют все больше и больше воспоминаний, включая элементы языка и важную информацию о своей жизни.Процедурные воспоминания (двигательные навыки) — это последняя способность, которую нужно уничтожить.
Человеческая память сложна, и нейробиологи все еще пытаются раскрыть механизмы, которые приводят к формированию воспоминаний. Новые научные методы постепенно позволяют исследовать, как кодируются и хранятся воспоминания, но пока что поверхность разума и содержащиеся в нем воспоминания были изучены только что.
В вчерашних статьях было рассмотрено, как мозг производит и воспринимает речь, а также как он контролирует наше настроение, побуждая нас вставать по утрам.
Память: как мозг строит сны
Наши самые яркие сны — это поразительное воспроизведение реальности, объединяющее разрозненные объекты, действия и восприятия в детализированный галлюцинаторный опыт. Как наш мозг это делает? Долгое время предполагалось, что гиппокамп способствует сновидениям, отчасти из-за его тесной связи с памятью: согласно одной оценке, около половины всех сновидений содержат по крайней мере один элемент, происходящий из определенного опыта, когда субъект бодрствовал (Fosse et al. al., 2003). Хотя эти сны редко являются точной копией какого-либо одного воспоминания, фрагменты различных недавних переживаний смешиваются с другими воспоминаниями (обычно связанными с далекими и семантическими воспоминаниями), чтобы создать новый сон. Учитывая все это, можно предположить, что сны создаются теми областями мозга, которые отвечают за память. Однако исследования 1960-х годов показали, что пациенты с поврежденным гиппокампом все еще видят сны (Torda, 1969a; Torda, 1969b; Solms, 2014), и, что несколько удивительно, такие пациенты могут видеть сны, связанные с недавними переживаниями, о которых они не осознают. память (Stickgold et al., 2000)!
Но действительно ли сны пациентов с повреждением гиппокампа «нормальны»? Или, альтернативно, может ли такой ущерб, не предотвращая сновидений, изменить форму, в которой они выражаются? В самом деле, есть основания полагать, что гиппокамп поддерживает важные аспекты построения сновидений, помимо простой вставки воспоминаний. Недавняя работа в области когнитивной нейробиологии установила, что гиппокамп, помимо участия в формировании воспоминаний, также является частью системы мозга, которая участвует в использовании памяти для построения новых воображаемых сценариев и моделирования возможных будущих событий (Hassabis et al. ., 2007; Хассабис и Магуайр, 2009; Шактер и Аддис, 2007). В результате пациентам без гиппокампа трудно представить себе последовательные сцены, возможно, потому, что гиппокамп отвечает за объединение различных элементов памяти в пространственно связное целое.
Теперь, в eLife, Элеонора Магуайр из Университетского колледжа Лондона (UCL) и ее коллеги, в том числе Гоффредина Спано в качестве первого автора, сообщают, что сны четырех пациентов с амнезией, у которых отсутствует гиппокампальная система памяти, не имеют того богатства деталей, которое можно найти в большинстве снов ( Spanò et al., 2020). Помимо сообщения о значительно меньшем количестве сновидений, чем пациенты в контрольной группе, четыре пациента с амнезией также сообщали о сновидениях, которые были значительно менее подробными: их сны содержали меньше деталей пространственного расположения (например, такие описания, как «за решеткой» или «слева от меня»). Я могу видеть ») и меньше сенсорных деталей. Эти наблюдения подтверждают появляющееся представление о том, что сны генерируются сетями в мозгу, подобными сетям, которые участвуют в воспроизведении воспоминаний и построении воображаемых сценариев во время бодрствования (Fox et al., 2013; Graveline and Wamsley, 2015). Подобно памяти и воображению, яркий сон требует построения подробных воображаемых сцен на основе памяти — и этот процесс, похоже, зависит от гиппокампа.
Эти наблюдения частично перекликаются с сообщениями Клары Торда более полувека назад, которая охарактеризовала сны пациентов с амнезией как «более короткие», «простые», «повторяющиеся» и «стереотипные» (Torda, 1969a). Но статьи Торды были написаны до изобретения неинвазивных методов визуализации мозга, поэтому не совсем ясно, какие структуры могли быть повреждены у ее пациентов.Напротив, пациенты в работе Spanò et al. у всех есть хорошо охарактеризованные участки поражения с повреждением, ограниченным только гиппокампом. Это позволяет нам с уверенностью приписывать их скудные сны потере самого гиппокампа, а не другим областям близлежащей височной доли, которые также могут иметь отношение к сновидениям.
Как и многие исследования редких неврологических пациентов, последнюю работу следует интерпретировать с осторожностью из-за небольшого размера выборки. Например, сновидения пациентов не были значительно короче контрольных снов, что приводило к явно выборочному дефициту определенных типов сообщаемых деталей (таких как пространственные детали и сенсорные детали), а не к общему дефициту продолжительности сновидения.Однако в среднем контрольные сны содержали более чем в два раза больше информативных слов, чем сны пациента, и отсутствие статистической разницы между двумя группами может быть просто артефактом небольшого размера выборки.
Тем не менее, эти наблюдения и несколько подобных исследований помогают нам понять, как гиппокамп способствует процессу сновидений. Работа Spanò et al. — которые базируются в UCL, Королевской бесплатной больнице в Лондоне, университетской больнице Бонна и университетах Аризоны и Оксфорда — предполагают, что повреждение гиппокампа нарушает сновидения, отражая то, как оно также разрушает воображение.Это предполагает, что сновидения не являются совершенно отдельным явлением, а являются частью континуума спонтанных, конструктивных мыслей и образов, непрерывно генерируемых в состояниях сна и бодрствования.
Анатомия мозга и принцип работы мозга
Что такое мозг?
Мозг — сложный орган, который контролирует мысли, память, эмоции, осязание, моторику, зрение, дыхание, температуру, голод и все процессы, регулирующие наше тело. Вместе головной и спинной мозг, отходящие от него, составляют центральную нервную систему или ЦНС.
Из чего сделан мозг?
При весе около 3 фунтов в среднем взрослого человека мозг состоит примерно на 60% из жира. Остальные 40% — это вода, белок, углеводы и соли. Сам мозг — это не мышца. Он содержит кровеносные сосуды и нервы, в том числе нейроны и глиальные клетки.
Что такое серое и белое вещество?
Серое и белое вещество — две разные области центральной нервной системы. В головном мозге серое вещество относится к более темной внешней части, а белое вещество — к более светлой внутренней части под ней.В спинном мозге этот порядок обратный: белое вещество находится снаружи, а серое вещество находится внутри.
Серое вещество в основном состоит из нейронных сом (круглых центральных тел клеток), а белое вещество в основном состоит из аксонов (длинных стержней, соединяющих нейроны), обернутых миелином (защитное покрытие). Из-за разного состава частей нейрона на некоторых снимках они выглядят как отдельные оттенки.
Каждый регион выполняет свою роль.Серое вещество в первую очередь отвечает за обработку и интерпретацию информации, а белое вещество передает эту информацию другим частям нервной системы.
Как работает мозг?
Мозг посылает и получает химические и электрические сигналы по всему телу. Различные сигналы управляют разными процессами, и ваш мозг интерпретирует каждый. Например, от одних вы чувствуете усталость, от других — боль.
Некоторые сообщения хранятся в головном мозге, а другие передаются по позвоночнику и через обширную сеть нервов в отдаленные конечности.Для этого центральная нервная система полагается на миллиарды нейронов (нервных клеток).
Основные части мозга и их функции
На высоком уровне мозг можно разделить на головной мозг, ствол мозга и мозжечок.
головного мозга
Головной мозг (передняя часть мозга) состоит из серого вещества (коры головного мозга) и белого вещества в его центре. Большая часть мозга, головной мозг, инициирует и координирует движение и регулирует температуру.Другие области головного мозга обеспечивают речь, суждение, мышление и рассуждение, решение проблем, эмоции и обучение. Другие функции связаны со зрением, слухом, осязанием и другими чувствами.
Кора головного мозга
Cortex в переводе с латыни означает «кора» и описывает внешнее серое вещество, покрывающее головной мозг. Кора имеет большую площадь поверхности из-за складок и составляет около половины веса мозга.
Кора головного мозга делится на две половины или полушария. Он покрыт гребнями (извилинами) и складками (бороздами).Две половины соединяются в большой глубокой борозде (межполушарная щель, также известная как медиальная продольная щель), которая проходит от передней части головы к спине. Правое полушарие контролирует левую сторону тела, а левая половина контролирует правую сторону тела. Две половины сообщаются друг с другом через большую С-образную структуру белого вещества и нервных путей, называемую мозолистым телом. Мозолистое тело находится в центре головного мозга.
Ствол мозга
Ствол головного мозга (середина головного мозга) соединяет головной мозг со спинным мозгом.Ствол мозга включает средний мозг, мост и продолговатый мозг.
- Средний мозг. Средний мозг (или средний мозг) представляет собой очень сложную структуру с рядом различных кластеров нейронов (ядер и колликулов), нервных путей и других структур. Эти функции облегчают выполнение различных функций, от слуха и движения до расчета реакции и изменений окружающей среды. Средний мозг также содержит черную субстанцию, область, пораженную болезнью Паркинсона, которая богата дофаминовыми нейронами и частью базальных ганглиев, которые обеспечивают движение и координацию.
- Пон. Мост является источником четырех из 12 черепных нервов, которые обеспечивают выполнение ряда действий, таких как производство слезы, жевание, моргание, фокусировка зрения, равновесие, слух и выражение лица. Названный от латинского слова «мост», мост представляет собой соединение между средним мозгом и продолговатым мозгом.
- Медулла. В нижней части ствола головного мозга, продолговатый мозг — это место, где головной мозг соединяется со спинным мозгом. Мозговое вещество необходимо для выживания.Функции мозгового вещества регулируют многие виды деятельности организма, включая сердечный ритм, дыхание, кровоток, а также уровни кислорода и углекислого газа. Головной мозг вызывает рефлексивные действия, такие как чихание, рвота, кашель и глотание.
Спинной мозг проходит от нижней части продолговатого мозга через большое отверстие в нижней части черепа. Поддерживаемый позвонками, спинной мозг передает сообщения к головному мозгу и остальному телу.
Мозжечок
Мозжечок («маленький мозг») — это часть мозга размером с кулак, расположенная в задней части головы, ниже височной и затылочной долей и выше ствола мозга.Как и кора головного мозга, она состоит из двух полушарий. Внешняя часть содержит нейроны, а внутренняя область сообщается с корой головного мозга. Его функция — координировать произвольные движения мышц и поддерживать осанку, баланс и равновесие. Новые исследования изучают роль мозжечка в мышлении, эмоциях и социальном поведении, а также его возможное участие в развитии зависимости, аутизма и шизофрении.
Оболочки мозга: мозговые оболочки
Три слоя защитного покрытия, называемые мозговыми оболочками , окружают головной и спинной мозг.
- Самый внешний слой, dura mater , толстый и прочный. Он состоит из двух слоев: периостальный слой твердой мозговой оболочки выстилает внутренний купол черепа (череп), а менингеальный слой находится под ним. Пространства между слоями позволяют проходить венам и артериям, которые снабжают кровью мозг.
- Паутинная оболочка представляет собой тонкий, похожий на паутину слой соединительной ткани, не содержащий нервов и кровеносных сосудов. Ниже паутинной оболочки находится спинномозговая жидкость, или спинномозговая жидкость.Эта жидкость смягчает всю центральную нервную систему (головной и спинной мозг) и постоянно циркулирует вокруг этих структур, удаляя загрязнения.
- Мягкая мозговая оболочка представляет собой тонкую мембрану, которая охватывает поверхность мозга и повторяет его контуры. Мягкая мозговая оболочка богата венами и артериями.
Доли мозга и то, что они контролируют
Каждое полушарие головного мозга (части головного мозга) состоит из четырех частей, называемых долями: лобной, теменной, височной и затылочной.Каждая доля управляет определенными функциями.
- Лобная доля. Самая большая доля мозга, расположенная в передней части головы, лобная доля участвует в характеристиках личности, принятии решений и движении. Распознавание запаха обычно затрагивает части лобной доли. Лобная доля содержит область Брока, которая связана с речевой способностью.
- Теменная доля. Средняя часть мозга, теменная доля, помогает человеку идентифицировать объекты и понимать пространственные отношения (где тело человека сравнивается с объектами вокруг человека).Теменная доля также участвует в интерпретации боли и прикосновений к телу. В теменной доле находится зона Вернике, которая помогает мозгу понимать разговорный язык.
- Затылочная доля. Затылочная доля — это задняя часть мозга, отвечающая за зрение.
- Височная доля. Стороны мозга, височные доли участвуют в кратковременной памяти, речи, музыкальном ритме и некоторой степени распознавания запахов.
Более глубокие структуры мозга
Гипофиз
Гипофиз, который иногда называют «главной железой», представляет собой структуру размером с горошину, находящуюся в глубине мозга за переносицей.Гипофиз управляет функцией других желез в организме, регулируя отток гормонов из щитовидной железы, надпочечников, яичников и яичек. Он получает химические сигналы от гипоталамуса через стебель и кровоснабжение.
Гипоталамус
Гипоталамус расположен над гипофизом и посылает ему химические сообщения, контролирующие его функцию. Он регулирует температуру тела, синхронизирует режим сна, контролирует голод и жажду, а также играет роль в некоторых аспектах памяти и эмоций.
Миндалевидное тело
Маленькие миндалевидные образования, миндалевидное тело, расположено под каждой половиной (полушарием) мозга. Включенные в лимбическую систему, миндалины регулируют эмоции и память и связаны с системой вознаграждения мозга, стрессом и реакцией «бей или беги», когда кто-то ощущает угрозу.
Гиппокамп
Гиппокамп — изогнутый орган в форме морского конька на нижней стороне каждой височной доли, является частью более крупной структуры, называемой гиппокампальной формацией.Он поддерживает память, обучение, навигацию и восприятие пространства. Он получает информацию от коры головного мозга и может играть роль в болезни Альцгеймера.
Шишковидная железа
Шишковидная железа расположена глубоко в головном мозге и прикрепляется ножкой к вершине третьего желудочка. Шишковидная железа реагирует на свет и темноту и выделяет мелатонин, который регулирует циркадные ритмы и цикл сна и бодрствования.
Желудочки и спинномозговая жидкость
В глубине мозга четыре открытых участка с проходами между ними.Они также открываются в центральный позвоночный канал и область под паутинным слоем мозговых оболочек.
Желудочки производят спинномозговую жидкость , или CSF, водянистую жидкость, которая циркулирует внутри и вокруг желудочков и спинного мозга, а также между мозговыми оболочками. ЦСЖ окружает и смягчает спинной и головной мозг, вымывает отходы и загрязнения и доставляет питательные вещества.
Кровоснабжение мозга
Два набора кровеносных сосудов снабжают мозг кровью и кислородом: позвоночных артерий, и сонных артерий.
Наружные сонные артерии простираются вверх по бокам шеи, и именно там вы можете почувствовать пульс, прикоснувшись к этой области кончиками пальцев. Внутренние сонные артерии разветвляются в череп и циркулируют кровь к передней части мозга.
Позвоночные артерии следуют по позвоночному столбу в череп, где они соединяются в стволе мозга и образуют базилярную артерию , которая снабжает кровью задние части мозга.
круг Уиллиса , петля кровеносных сосудов в нижней части мозга, которая соединяет основные артерии, циркулирует кровь от передней части мозга к задней и помогает артериальным системам общаться друг с другом.
Черепные нервы
Внутри черепа (купола черепа) находится 12 нервов, называемых черепными нервами:
- Черепной нерв 1: Первый — это обонятельный нерв , , который обеспечивает обоняние.
- Черепной нерв 2: зрительный нерв управляет зрением.
- Черепной нерв 3: Глазодвигательный нерв контролирует реакцию зрачка и другие движения глаза и разветвляется от области в стволе мозга, где средний мозг встречается с мостом.
- Черепной нерв 4: блокирующий нерв управляет мышцами глаза. Он выходит из задней части средней мозговой части ствола мозга.
- Черепной нерв 5: тройничный нерв — самый большой и сложный из черепных нервов, выполняющий как сенсорную, так и двигательную функции. Он исходит из моста и передает ощущения от кожи головы, зубов, челюсти, носовых пазух, частей рта и лица к мозгу, обеспечивает функционирование жевательных мышц и многое другое.
- Черепной нерв 6: Отводящий нерв иннервирует некоторые мышцы глаза.
- Черепной нерв 7: лицевой нерв поддерживает движения лица, вкусовые, железистые и другие функции.
- Черепной нерв 8: вестибулокохлеарный нерв обеспечивает равновесие и слух.
- Черепной нерв 9: языкоглоточный нерв обеспечивает движение вкуса, уха и горла, а также выполняет множество других функций.
- Черепной нерв 10: блуждающий нерв обеспечивает ощущения вокруг уха и пищеварительной системы и контролирует двигательную активность в сердце, горле и пищеварительной системе.
- Черепной нерв 11: Добавочный нерв иннервирует определенные мышцы головы, шеи и плеча.